{"title":"Engineering THz-frequency light generation, detection, and manipulation through graphene","authors":"Miriam S. Vitiello, Leonardo Viti","doi":"10.1063/5.0199461","DOIUrl":null,"url":null,"abstract":"Graphene has been one of the most investigated materials in the last decade. Its unique optoelectronic properties have indeed raised it to an ideal and revolutionary candidate for the development of entirely novel technologies across the whole electromagnetic spectrum, from the microwaves to the x-rays, even crossing domain of intense application relevance, as terahertz (THz) frequencies. Owing to its exceptionally high tensile strength, electrical conductivity, transparency, ultra-fast carrier dynamics, nonlinear optical response to intense fields, electrical tunability, and ease of integration with semiconductor materials, graphene is a key disruptor for the engineering of generation, manipulation, and detection technologies with ad hoc properties, conceived from scratch. In this review, we elucidate the fundamental properties of graphene, with an emphasis on its transport, electronic, ultrafast and nonlinear interactions, and explore its enormous technological potential of integration with a diverse array of material platforms. We start with a concise introduction to graphene physics, followed by the most remarkable technological developments of graphene-based photodetectors, modulators, and sources in the 1–10 THz frequency range. As such, this review aims to serve as a valuable resource for a broad audience, ranging from novices to experts, who are keen to explore graphene physics for conceiving and realizing microscale and nanoscale devices and systems in the far infrared. This would allow addressing the present challenging application needs in quantum science, wireless communications, ultrafast science, plasmonics, and nanophotonics.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"30 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0199461","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene has been one of the most investigated materials in the last decade. Its unique optoelectronic properties have indeed raised it to an ideal and revolutionary candidate for the development of entirely novel technologies across the whole electromagnetic spectrum, from the microwaves to the x-rays, even crossing domain of intense application relevance, as terahertz (THz) frequencies. Owing to its exceptionally high tensile strength, electrical conductivity, transparency, ultra-fast carrier dynamics, nonlinear optical response to intense fields, electrical tunability, and ease of integration with semiconductor materials, graphene is a key disruptor for the engineering of generation, manipulation, and detection technologies with ad hoc properties, conceived from scratch. In this review, we elucidate the fundamental properties of graphene, with an emphasis on its transport, electronic, ultrafast and nonlinear interactions, and explore its enormous technological potential of integration with a diverse array of material platforms. We start with a concise introduction to graphene physics, followed by the most remarkable technological developments of graphene-based photodetectors, modulators, and sources in the 1–10 THz frequency range. As such, this review aims to serve as a valuable resource for a broad audience, ranging from novices to experts, who are keen to explore graphene physics for conceiving and realizing microscale and nanoscale devices and systems in the far infrared. This would allow addressing the present challenging application needs in quantum science, wireless communications, ultrafast science, plasmonics, and nanophotonics.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.