Ginu R. George, Sai Krishna Danda, Gregor D. Wehinger
{"title":"A simplified CFD approach for modeling mass transport in catalytic open-cell foams","authors":"Ginu R. George, Sai Krishna Danda, Gregor D. Wehinger","doi":"10.1016/j.ces.2025.121416","DOIUrl":null,"url":null,"abstract":"A simplified macroscopic CFD approach is presented to model mass transport including chemical reactions in washcoated open-cell foams. The foam is treated as a porous medium. Species conversion during chemical reactions is modeled using appropriate source terms based on reaction rate expressions and modified to account for the mass transport resistances occurring at the fluid-washcoat interfaces and within the washcoat layers. As example, the catalytic CO oxidation over platinum is studied. The simulation results show good agreement with experimental data from literature. A parametric study on washcoat parameters, such as thickness, tortuosity, porosity, and size, is carried out. Increasing the washcoat thickness from 5 to 100 µm or decreasing the tortuosity to porosity ratio from 5 to 20 decreases the CO conversion by 10 %. The proposed model is found to be reliable and has the advantage of lower computational cost, making it a suitable tool for foam-based catalytic reactor design.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"22 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2025.121416","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A simplified macroscopic CFD approach is presented to model mass transport including chemical reactions in washcoated open-cell foams. The foam is treated as a porous medium. Species conversion during chemical reactions is modeled using appropriate source terms based on reaction rate expressions and modified to account for the mass transport resistances occurring at the fluid-washcoat interfaces and within the washcoat layers. As example, the catalytic CO oxidation over platinum is studied. The simulation results show good agreement with experimental data from literature. A parametric study on washcoat parameters, such as thickness, tortuosity, porosity, and size, is carried out. Increasing the washcoat thickness from 5 to 100 µm or decreasing the tortuosity to porosity ratio from 5 to 20 decreases the CO conversion by 10 %. The proposed model is found to be reliable and has the advantage of lower computational cost, making it a suitable tool for foam-based catalytic reactor design.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.