Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Minseok Choi, Joohoon Kim, Seokil Moon, Kilsoo Shin, Seung-Woo Nam, Yujin Park, Dohyun Kang, Gyoseon Jeon, Kyung-il Lee, Dong Hyun Yoon, Yoonchan Jeong, Chang-Kun Lee, Junsuk Rho
{"title":"Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays","authors":"Minseok Choi, Joohoon Kim, Seokil Moon, Kilsoo Shin, Seung-Woo Nam, Yujin Park, Dohyun Kang, Gyoseon Jeon, Kyung-il Lee, Dong Hyun Yoon, Yoonchan Jeong, Chang-Kun Lee, Junsuk Rho","doi":"10.1038/s41563-025-02121-0","DOIUrl":null,"url":null,"abstract":"Metalenses show promise for replacing conventional lenses in virtual reality systems, thereby facilitating lighter and more compact near-eye displays (NEDs). However, at the centimetre scale necessary for practical applications, previous multiwavelength achromatic metalenses have faced challenges in mass production and exhibited a low numerical aperture (NA), which limits their practical application in NEDs. Here we introduce a centimetre-scale red, green and blue achromatic metalens fabricated using a roll-to-plate technique and explore its potential for practical applications in NEDs. This metalens is designed through topological inverse design utilizing a finite-difference time-domain simulation for entire areas (~10,000λ). Our design method demonstrates the ability to compensate chromatic aberrations even at the centimetre scale and high NA with low-index materials such as resin suitable for scalable manufacturing. In addition, we developed a compact NED by integrating the metalens with computer-generated holography (CGH). In this NED system, the high-NA metalens address the limitations of narrow field of view and extensive empty space typical of conventional CGH-based NEDs. The CGH optimization model further resolves the challenges of broadband operation and off-axis aberration in centimetre-scale red, green and blue achromatic metalenses. Using a topological inverse design process with finite-difference time-domain simulations, the authors fabricate high-numerical-aperture red, green and blue achromatic metalenses for compact near-eye displays using a scalable roll-to-plate technique.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"24 4","pages":"535-543"},"PeriodicalIF":37.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-025-02121-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metalenses show promise for replacing conventional lenses in virtual reality systems, thereby facilitating lighter and more compact near-eye displays (NEDs). However, at the centimetre scale necessary for practical applications, previous multiwavelength achromatic metalenses have faced challenges in mass production and exhibited a low numerical aperture (NA), which limits their practical application in NEDs. Here we introduce a centimetre-scale red, green and blue achromatic metalens fabricated using a roll-to-plate technique and explore its potential for practical applications in NEDs. This metalens is designed through topological inverse design utilizing a finite-difference time-domain simulation for entire areas (~10,000λ). Our design method demonstrates the ability to compensate chromatic aberrations even at the centimetre scale and high NA with low-index materials such as resin suitable for scalable manufacturing. In addition, we developed a compact NED by integrating the metalens with computer-generated holography (CGH). In this NED system, the high-NA metalens address the limitations of narrow field of view and extensive empty space typical of conventional CGH-based NEDs. The CGH optimization model further resolves the challenges of broadband operation and off-axis aberration in centimetre-scale red, green and blue achromatic metalenses. Using a topological inverse design process with finite-difference time-domain simulations, the authors fabricate high-numerical-aperture red, green and blue achromatic metalenses for compact near-eye displays using a scalable roll-to-plate technique.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信