Mingwei Hao, Jonghee Yang, Wenjian Yu, Benjamin J. Lawrie, Pengfei Guo, Xiangzhao Zhang, Tianwei Duan, Tong Xiao, Linqi Chen, Yang Xiang, Peijun Guo, Mahshid Ahmadi, Yuanyuan Zhou
{"title":"Nanoscopic cross-grain cation homogenization in perovskite solar cells","authors":"Mingwei Hao, Jonghee Yang, Wenjian Yu, Benjamin J. Lawrie, Pengfei Guo, Xiangzhao Zhang, Tianwei Duan, Tong Xiao, Linqi Chen, Yang Xiang, Peijun Guo, Mahshid Ahmadi, Yuanyuan Zhou","doi":"10.1038/s41565-025-01854-y","DOIUrl":null,"url":null,"abstract":"<p>Multiscale cation inhomogeneity has been a major hurdle in state-of-the-art formamidinium–caesium (FA–Cs) mixed-cation perovskites for achieving perovskite solar cells with optimal power conversion efficiencies and durability. Although the field has attempted to homogenize the overall distributions of FA–Cs in perovskite films from both plan and cross-sectional views, our understanding of grain-to-grain cation inhomogeneity and ability to tailor it—that is, spatially resolving the FA–Cs compositional difference between individual grains down to the nanoscale—are lacking. Here we reveal that as fundamental building blocks of a perovskite film, individual grains exhibit cationic compositions deviating from the prescribed ideal composition, severely limiting the interfacial optoelectronic properties and perovskite layer durability. This performance-limiting nanoscopic factor is linked to thermodynamic-driven morphological grooving, leading to a segmented surface landscape. At the grain triple junctions, grooves form nanoscale groove traps that hinder the mixing of solid-state cations across grains and thus retard inter-grain FA–Cs mixing. By rationally modulating the heterointerfacial energies, we reduced the depth of these nanoscale groove traps by a factor of three, significantly improving cation homogeneity. Perovskite solar cells with shallower nanoscale groove traps demonstrate enhanced power conversion efficiencies (25.62%) and improved stability under various standardized international protocols. Our work highlights the significance of resolving surface nano-morphologies for homogeneous properties of perovskites.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"27 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01854-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiscale cation inhomogeneity has been a major hurdle in state-of-the-art formamidinium–caesium (FA–Cs) mixed-cation perovskites for achieving perovskite solar cells with optimal power conversion efficiencies and durability. Although the field has attempted to homogenize the overall distributions of FA–Cs in perovskite films from both plan and cross-sectional views, our understanding of grain-to-grain cation inhomogeneity and ability to tailor it—that is, spatially resolving the FA–Cs compositional difference between individual grains down to the nanoscale—are lacking. Here we reveal that as fundamental building blocks of a perovskite film, individual grains exhibit cationic compositions deviating from the prescribed ideal composition, severely limiting the interfacial optoelectronic properties and perovskite layer durability. This performance-limiting nanoscopic factor is linked to thermodynamic-driven morphological grooving, leading to a segmented surface landscape. At the grain triple junctions, grooves form nanoscale groove traps that hinder the mixing of solid-state cations across grains and thus retard inter-grain FA–Cs mixing. By rationally modulating the heterointerfacial energies, we reduced the depth of these nanoscale groove traps by a factor of three, significantly improving cation homogeneity. Perovskite solar cells with shallower nanoscale groove traps demonstrate enhanced power conversion efficiencies (25.62%) and improved stability under various standardized international protocols. Our work highlights the significance of resolving surface nano-morphologies for homogeneous properties of perovskites.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.