{"title":"Stress exposure in the mdx mouse model of Duchenne muscular dystrophy provokes a widespread metabolic response.","authors":"Erynn E Johnson, James M Ervasti","doi":"10.1111/febs.70029","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy is a severe neuromuscular wasting disease that is caused by a primary defect in dystrophin protein and involves organism-wide comorbidities such as cardiomyopathy, metabolic and mitochondrial dysfunction, and nonprogressive cognitive impairments. Physiological stress exposure in the mdx mouse model of Duchenne muscular dystrophy results in phenotypic abnormalities that include locomotor inactivity, hypotension, and increased morbidity. Severe and lethal stress susceptibility in mdx mice corresponds to metabolic dysfunction in several coordinated metabolic pathways within dystrophin-deficient skeletal muscle, as well as prolonged elevation in mdx plasma corticosterone levels that extends beyond the wild-type (WT) stress response. Here, we performed a targeted mass spectrometry-based plasma metabolomics screen focused on biological stress pathways in healthy and dystrophin-deficient mdx mice exposed to mild scruff stress. One-third of the stress-relevant metabolites interrogated displayed significant elevation or depletion in mdx plasma after scruff stress and were restored to WT levels by skeletal muscle-specific dystrophin expression. The metabolic pathways of mdx mice altered by scruff stress are associated with regulation of the hypothalamic-pituitary-adrenal axis, locomotor tone, neurocognitive function, redox metabolism, cellular bioenergetics, and protein catabolism. Our data suggest that a mild stress triggers an exaggerated, multi-system metabolic response in mdx mice.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Duchenne muscular dystrophy is a severe neuromuscular wasting disease that is caused by a primary defect in dystrophin protein and involves organism-wide comorbidities such as cardiomyopathy, metabolic and mitochondrial dysfunction, and nonprogressive cognitive impairments. Physiological stress exposure in the mdx mouse model of Duchenne muscular dystrophy results in phenotypic abnormalities that include locomotor inactivity, hypotension, and increased morbidity. Severe and lethal stress susceptibility in mdx mice corresponds to metabolic dysfunction in several coordinated metabolic pathways within dystrophin-deficient skeletal muscle, as well as prolonged elevation in mdx plasma corticosterone levels that extends beyond the wild-type (WT) stress response. Here, we performed a targeted mass spectrometry-based plasma metabolomics screen focused on biological stress pathways in healthy and dystrophin-deficient mdx mice exposed to mild scruff stress. One-third of the stress-relevant metabolites interrogated displayed significant elevation or depletion in mdx plasma after scruff stress and were restored to WT levels by skeletal muscle-specific dystrophin expression. The metabolic pathways of mdx mice altered by scruff stress are associated with regulation of the hypothalamic-pituitary-adrenal axis, locomotor tone, neurocognitive function, redox metabolism, cellular bioenergetics, and protein catabolism. Our data suggest that a mild stress triggers an exaggerated, multi-system metabolic response in mdx mice.