Binary protein interactome mapping of the Giardia lamblia proteasome lid reveals extra proteasomal functions of GlRpn11.

Ankita Das, Atrayee Ray, Nibedita Ray Chaudhuri, Soumyajit Mukherjee, Shubhra Ghosh Dastidar, Alok Ghosh, Sandipan Ganguly, Kuladip Jana, Srimonti Sarkar
{"title":"Binary protein interactome mapping of the Giardia lamblia proteasome lid reveals extra proteasomal functions of GlRpn11.","authors":"Ankita Das, Atrayee Ray, Nibedita Ray Chaudhuri, Soumyajit Mukherjee, Shubhra Ghosh Dastidar, Alok Ghosh, Sandipan Ganguly, Kuladip Jana, Srimonti Sarkar","doi":"10.1111/febs.70027","DOIUrl":null,"url":null,"abstract":"<p><p>The assembly of the 26S proteasome, a multi-subunit complex for regulated protein turnover, proceeds via the formation of intermediates. Giardia lamblia does not encode proteasome regulatory subunit Rpn12 or proteasome complex subunit Sem1, two proteins crucial for assembling the proteasome lid. To understand how the interactions between the giardial proteasome lid subunits may have changed to compensate for their absence, we used yeast two-hybrid to generate a binary interactome map of Giardia's lid subunits. Most interactions within the Giardia lid are stronger than Saccharomyces cerevisiae lid, which may compensate for Rpn12 and Sem1 absence. A notable exception was the weaker interaction between the two non-ATPase lid subunits, GlRpn11 and GlRpn8, compared to the strong interaction between yeast orthologs Rpn11 and Rpn8. The Rpn11-Rpn8 dimer provides a platform for lid assembly. Their interaction involves the insertion of a methionine residue of Rpn11 into a hydrophobic pocket of Rpn8. Molecular modeling indicates that GlRpn8's pocket is wider, reconciling the experimental observation of its weak interaction with GlRpn11. This weaker interaction may have evolved to support proteasome-independent functions of GlRpn11, which localizes to multiple subcellular regions, including the mitosomes, where other proteasome subunits cannot be detected. Functional complementation in yeast shows that GlRpn11 can influence mitochondrial function and distribution. Together these observations show that GlRpn11 functions at the mitosome. Thus, this parasite's proteasome lid has a simpler subunit architecture than that of yeast with structural attributes to support dual functionalities for GlRpn11. Such parasite-specific proteasome features provide opportunities for controlling parasite transmission.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The assembly of the 26S proteasome, a multi-subunit complex for regulated protein turnover, proceeds via the formation of intermediates. Giardia lamblia does not encode proteasome regulatory subunit Rpn12 or proteasome complex subunit Sem1, two proteins crucial for assembling the proteasome lid. To understand how the interactions between the giardial proteasome lid subunits may have changed to compensate for their absence, we used yeast two-hybrid to generate a binary interactome map of Giardia's lid subunits. Most interactions within the Giardia lid are stronger than Saccharomyces cerevisiae lid, which may compensate for Rpn12 and Sem1 absence. A notable exception was the weaker interaction between the two non-ATPase lid subunits, GlRpn11 and GlRpn8, compared to the strong interaction between yeast orthologs Rpn11 and Rpn8. The Rpn11-Rpn8 dimer provides a platform for lid assembly. Their interaction involves the insertion of a methionine residue of Rpn11 into a hydrophobic pocket of Rpn8. Molecular modeling indicates that GlRpn8's pocket is wider, reconciling the experimental observation of its weak interaction with GlRpn11. This weaker interaction may have evolved to support proteasome-independent functions of GlRpn11, which localizes to multiple subcellular regions, including the mitosomes, where other proteasome subunits cannot be detected. Functional complementation in yeast shows that GlRpn11 can influence mitochondrial function and distribution. Together these observations show that GlRpn11 functions at the mitosome. Thus, this parasite's proteasome lid has a simpler subunit architecture than that of yeast with structural attributes to support dual functionalities for GlRpn11. Such parasite-specific proteasome features provide opportunities for controlling parasite transmission.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信