A general dynamic learning model framework for cognitive diagnosis.

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zichu Liu, Shiyu Wang, Houping Xiao, Shumei Zhang, Tao Qiu
{"title":"A general dynamic learning model framework for cognitive diagnosis.","authors":"Zichu Liu, Shiyu Wang, Houping Xiao, Shumei Zhang, Tao Qiu","doi":"10.1111/bmsp.12384","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding students' learning trajectories is crucial for educators to effectively monitor and enhance progress. With the rise of computer-based testing, researchers now have access to rich datasets that provide deeper insights into student performance. This study introduces a general dynamic learning model framework that integrates response accuracy and response times to capture different test-taking behaviors and estimate learning trajectories related to polytomous attributes over time. A Bayesian estimation method is proposed to estimate model parameters. Rigorous validation through simulation studies confirms the effectiveness of the MCMC algorithm in parameter recovery and highlights the model's utility in understanding learning trajectories and detecting different test-taking behaviors in a learning environment. Applied to real data, the model demonstrates practical value in educational settings. Overall, this comprehensive and validated model offers educators and researchers nuanced insights into student learning progress and behavioral dynamics.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12384","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding students' learning trajectories is crucial for educators to effectively monitor and enhance progress. With the rise of computer-based testing, researchers now have access to rich datasets that provide deeper insights into student performance. This study introduces a general dynamic learning model framework that integrates response accuracy and response times to capture different test-taking behaviors and estimate learning trajectories related to polytomous attributes over time. A Bayesian estimation method is proposed to estimate model parameters. Rigorous validation through simulation studies confirms the effectiveness of the MCMC algorithm in parameter recovery and highlights the model's utility in understanding learning trajectories and detecting different test-taking behaviors in a learning environment. Applied to real data, the model demonstrates practical value in educational settings. Overall, this comprehensive and validated model offers educators and researchers nuanced insights into student learning progress and behavioral dynamics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信