Optic nerve injury impairs intrinsic mechanisms underlying electrical activity in a resilient retinal ganglion cell.

IF 4.7 2区 医学 Q1 NEUROSCIENCES
Thomas E Zapadka, Nicholas M Tran, Jonathan B Demb
{"title":"Optic nerve injury impairs intrinsic mechanisms underlying electrical activity in a resilient retinal ganglion cell.","authors":"Thomas E Zapadka, Nicholas M Tran, Jonathan B Demb","doi":"10.1113/JP286414","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal ganglion cells (RGCs) are the sole output neurons of the retina and convey visual information to the brain via their axons in the optic nerve. Following injury to the optic nerve, RGC axons degenerate and many cells die. For example, a model of axon injury, the optic nerve crush (ONC), kills ∼80% of RGCs after 2 weeks. Surviving cells are biased towards 'resilient' types, including several with sustained firing to light stimulation. RGC survival may depend on activity, and there is limited understanding of how or why activity changes following optic nerve injury. Here we quantified the electrophysiological properties of a highly resilient RGC type, the sustained ON-Alpha (AlphaONS) RGC, 7 days after ONC with extracellular and whole-cell patch clamp recording. Both light- and current-driven firing were reduced after ONC, but synaptic inputs were largely intact. Resting membrane potential and input resistance were relatively unchanged, while voltage-gated currents were impaired, including a reduction in voltage-gated sodium channel current and channel density in the axon initial segment. Hyperpolarization or chelation of intracellular calcium partially rescued firing rates. Extracellular recordings at 3 days following ONC showed normal light-evoked firing from AlphaONS RGCs and other Alpha RGCs, including susceptible types. These data suggest that an injured resilient RGC reduces its activity by 1 week after injury as a consequence of reduced voltage-gated current and downregulation of intrinsic excitability via a Ca<sup>2+</sup>-dependent mechanism. Reduced excitability may be due to degradation of the axon but could also be energetically beneficial, preserving energy for survival and regeneration. KEY POINTS: Retinal ganglion cell (RGC) types show diverse rates of survival after axon injury. A resilient RGC type (sustained ON-Alpha RGC) maintains its synaptic inputs 1 week after injury. The resilient RGC type shows diminished firing and reduced expression of axon initial segment genes 1 week after injury Activity deficits reflect dysfunction of intrinsic properties (Na<sup>+</sup> channels, intracellular Ca<sup>2+</sup>), not changes to synaptic input. Both resilient and susceptible Alpha RGC types show intact firing at 3 days after injury, suggesting that activity at this time point does not predict resilience.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP286414","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal ganglion cells (RGCs) are the sole output neurons of the retina and convey visual information to the brain via their axons in the optic nerve. Following injury to the optic nerve, RGC axons degenerate and many cells die. For example, a model of axon injury, the optic nerve crush (ONC), kills ∼80% of RGCs after 2 weeks. Surviving cells are biased towards 'resilient' types, including several with sustained firing to light stimulation. RGC survival may depend on activity, and there is limited understanding of how or why activity changes following optic nerve injury. Here we quantified the electrophysiological properties of a highly resilient RGC type, the sustained ON-Alpha (AlphaONS) RGC, 7 days after ONC with extracellular and whole-cell patch clamp recording. Both light- and current-driven firing were reduced after ONC, but synaptic inputs were largely intact. Resting membrane potential and input resistance were relatively unchanged, while voltage-gated currents were impaired, including a reduction in voltage-gated sodium channel current and channel density in the axon initial segment. Hyperpolarization or chelation of intracellular calcium partially rescued firing rates. Extracellular recordings at 3 days following ONC showed normal light-evoked firing from AlphaONS RGCs and other Alpha RGCs, including susceptible types. These data suggest that an injured resilient RGC reduces its activity by 1 week after injury as a consequence of reduced voltage-gated current and downregulation of intrinsic excitability via a Ca2+-dependent mechanism. Reduced excitability may be due to degradation of the axon but could also be energetically beneficial, preserving energy for survival and regeneration. KEY POINTS: Retinal ganglion cell (RGC) types show diverse rates of survival after axon injury. A resilient RGC type (sustained ON-Alpha RGC) maintains its synaptic inputs 1 week after injury. The resilient RGC type shows diminished firing and reduced expression of axon initial segment genes 1 week after injury Activity deficits reflect dysfunction of intrinsic properties (Na+ channels, intracellular Ca2+), not changes to synaptic input. Both resilient and susceptible Alpha RGC types show intact firing at 3 days after injury, suggesting that activity at this time point does not predict resilience.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信