{"title":"Unraveling the molecular grammar and the structural transitions underlying the fibrillation of a viral fibrillogenic domain.","authors":"Frank Gondelaud, Julien Leval, Lisha Arora, Anuja Walimbe, Christophe Bignon, Denis Ptchelkine, Stefania Brocca, Samrat Mukhopadyay, Sonia Longhi","doi":"10.1002/pro.70068","DOIUrl":null,"url":null,"abstract":"<p><p>Hendra virus (HeV) is a biosafety level 4 human pathogen belonging to the Henipavirus genus within the Paramyxoviridae family. In HeV, the phosphoprotein-encoding gene also drives the synthesis of the V and W proteins that are two major players in the host innate immune response evasion. These three proteins share a common intrinsically disordered N-terminal domain (NTD) and have distinct C-terminal domains. We recently reported the ability of a short region (i.e., PNT3), located within the shared NTD, to form fibrils. We subsequently identified a PNT3 motif (EYYY) critically involved in fibrillation and deciphered the contribution of each tyrosine to the process. Herein, we combined mutational studies with various biochemical and biophysical approaches to further investigate the molecular mechanisms underlying PNT3 fibrillation. The results show that (i) lysine residues play a critical role in driving fibrillation, (ii) hydrophobic residues affect the nucleation step, and (iii) charge distribution strongly affects the fibrillation propensities. Vibrational Raman spectroscopy data further validated the role of lysine residues in promoting fibrillation and enabled documenting the formation of cross-β amyloid structures. Altogether, these results illuminate the molecular mechanisms involved in fibril formation and pave the way towards the rational design of inhibitors.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 3","pages":"e70068"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845978/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70068","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hendra virus (HeV) is a biosafety level 4 human pathogen belonging to the Henipavirus genus within the Paramyxoviridae family. In HeV, the phosphoprotein-encoding gene also drives the synthesis of the V and W proteins that are two major players in the host innate immune response evasion. These three proteins share a common intrinsically disordered N-terminal domain (NTD) and have distinct C-terminal domains. We recently reported the ability of a short region (i.e., PNT3), located within the shared NTD, to form fibrils. We subsequently identified a PNT3 motif (EYYY) critically involved in fibrillation and deciphered the contribution of each tyrosine to the process. Herein, we combined mutational studies with various biochemical and biophysical approaches to further investigate the molecular mechanisms underlying PNT3 fibrillation. The results show that (i) lysine residues play a critical role in driving fibrillation, (ii) hydrophobic residues affect the nucleation step, and (iii) charge distribution strongly affects the fibrillation propensities. Vibrational Raman spectroscopy data further validated the role of lysine residues in promoting fibrillation and enabled documenting the formation of cross-β amyloid structures. Altogether, these results illuminate the molecular mechanisms involved in fibril formation and pave the way towards the rational design of inhibitors.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).