Preparation and Evaluation of RGD-Conjugated Crosslinked PVA Tissue Engineered Vascular Scaffold with Endothelial Differentiation and Its Impact on Vascular Regeneration In Vivo.

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiafei Li, Xuewei Zhang, Yameng Wang, Shenglu Ji, Ziwei Zhao, Jianshen Yin, Tuo Yang, Xin Feng, Hongli Chen, Wenbin Li, Xianwei Wang, Changqin Jing, Dan Ding, Liang Zhao
{"title":"Preparation and Evaluation of RGD-Conjugated Crosslinked PVA Tissue Engineered Vascular Scaffold with Endothelial Differentiation and Its Impact on Vascular Regeneration In Vivo.","authors":"Xiafei Li, Xuewei Zhang, Yameng Wang, Shenglu Ji, Ziwei Zhao, Jianshen Yin, Tuo Yang, Xin Feng, Hongli Chen, Wenbin Li, Xianwei Wang, Changqin Jing, Dan Ding, Liang Zhao","doi":"10.1002/mabi.202400554","DOIUrl":null,"url":null,"abstract":"<p><p>PVA has emerged as a prevalent material for the construction of vascular tissue engineering scaffolds. Nonetheless, the integration of 3D crosslinked polyvinyl alcohol (PVA) scaffolds featuring arginine-glycine-aspartate (RGD) binding remains a rarity in tissue engineering. In the present study, a PVA-4-azidobenzoic acid (AZ)-RGD scaffold is prepared based on cross-linking of two distinct PVA derivatives: one featuring photoreactive azides for ultraviolet (UV)-crosslinking and the other incorporating RGD peptides. The results show that the PVA-AZ-RGD scaffold has good blood compatibility and biomechanical properties, with hydrophilic properties, and a hydrolysis rate of 27.31% at 12 weeks. Notably, the incorporation of RGD peptides significantly bolsters the attachment and proliferation of mesenchymal stem cells (MSCs) on the scaffolds, compared to non-RGD-conjugated controls. Furthermore, RGD conjugation markedly accelerates endothelialization of MSCs following 15 days of endothelial culture. Post-transplantation, the PVA-AZ-RGD scaffold exhibits favorable blood flow patency, minimal immune rejection, promotes endothelialization and smooth muscle cell proliferation, and facilitates the development of extracellular matrix, ultimately contributing to the formation of regenerative artificial blood vessels. These comprehensive findings underscore the promising potential of RGD-integrated, crosslinked PVA scaffolds for applications in vascular tissue engineering.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400554"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400554","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

PVA has emerged as a prevalent material for the construction of vascular tissue engineering scaffolds. Nonetheless, the integration of 3D crosslinked polyvinyl alcohol (PVA) scaffolds featuring arginine-glycine-aspartate (RGD) binding remains a rarity in tissue engineering. In the present study, a PVA-4-azidobenzoic acid (AZ)-RGD scaffold is prepared based on cross-linking of two distinct PVA derivatives: one featuring photoreactive azides for ultraviolet (UV)-crosslinking and the other incorporating RGD peptides. The results show that the PVA-AZ-RGD scaffold has good blood compatibility and biomechanical properties, with hydrophilic properties, and a hydrolysis rate of 27.31% at 12 weeks. Notably, the incorporation of RGD peptides significantly bolsters the attachment and proliferation of mesenchymal stem cells (MSCs) on the scaffolds, compared to non-RGD-conjugated controls. Furthermore, RGD conjugation markedly accelerates endothelialization of MSCs following 15 days of endothelial culture. Post-transplantation, the PVA-AZ-RGD scaffold exhibits favorable blood flow patency, minimal immune rejection, promotes endothelialization and smooth muscle cell proliferation, and facilitates the development of extracellular matrix, ultimately contributing to the formation of regenerative artificial blood vessels. These comprehensive findings underscore the promising potential of RGD-integrated, crosslinked PVA scaffolds for applications in vascular tissue engineering.

rgd共轭交联PVA组织工程内皮分化血管支架的制备、评价及其对血管再生的影响。
聚乙烯醇已成为构建血管组织工程支架的常用材料。然而,结合精氨酸-甘氨酸-天冬氨酸(RGD)结合的3D交联聚乙烯醇(PVA)支架在组织工程中仍然是罕见的。在本研究中,基于两种不同的PVA衍生物的交联制备了PVA-4-叠氮苯甲酸(AZ)-RGD支架:一种具有光反应性叠氮化合物,用于紫外线(UV)交联,另一种含有RGD肽。结果表明,PVA-AZ-RGD支架具有良好的血液相容性和生物力学性能,具有亲水性,12周时水解率为27.31%。值得注意的是,与未结合RGD的对照相比,RGD肽的掺入显著增强了支架上的间充质干细胞(MSCs)的附着和增殖。此外,在内皮细胞培养15天后,RGD结合显著加速了MSCs的内皮化。移植后,PVA-AZ-RGD支架血流通畅良好,免疫排斥最小,促进内皮化和平滑肌细胞增殖,促进细胞外基质发育,最终促进再生人工血管的形成。这些全面的发现强调了rgd集成的交联PVA支架在血管组织工程中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信