Electrical impedance tomography in neonates: a review.

IF 3.1 3区 医学 Q1 PEDIATRICS
Ako A Ako, Ahmed Ismaiel, Shantanu Rastogi
{"title":"Electrical impedance tomography in neonates: a review.","authors":"Ako A Ako, Ahmed Ismaiel, Shantanu Rastogi","doi":"10.1038/s41390-025-03929-x","DOIUrl":null,"url":null,"abstract":"<p><p>Appropriate interventions informed by real-time assessment of pulmonary function in mechanically ventilated critically ill neonates can reduce the incidence of bronchopulmonary dysplasia, pneumothorax, intraventricular hemorrhage and other complications of newborn life. The respiratory system in neonates is uniquely different from older children, and its physiological and anatomic attributes increase neonatal vulnerability to respiratory distress and eventual failure. While significant advancements have been made in developing respiratory support for neonates, such support is accompanied by inherent risks to their delicate lungs. Ventilator-associated lung injury poses a critical concern that can be potentially decreased with more precise, non-invasive, non-radiating, bedside methods for assessing neonatal pulmonary function in real time. Electrical impedance tomography (EIT) is one such tool, with immense potential for real-time pulmonary function monitoring in neonates. Still relatively new and in the earliest stages of clinical adoption, EIT use in neonatal critical care has been reported in several studies. This review discusses the basic features of EIT, its distinct advantages over traditional pulmonary function monitoring tools, the scope of its adoption in neonatal clinical practice, challenges associated with clinical adoption, and prospects for future applications. IMPACT: 1. Individualized care assisted by bedside pulmonary function monitoring can positively impact neonatal critical care and outcomes. 2. Electrical impedance tomography (EIT) has the potential to improve neonatal pulmonary function monitoring and treatment outcomes. 3. Electrical impedance tomography can be adopted as a part of routine neonatal respiratory critical care, especially in the population of patients most at risk for bronchopulmonary dysplasia and acute respiratory complications.</p>","PeriodicalId":19829,"journal":{"name":"Pediatric Research","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41390-025-03929-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

Abstract

Appropriate interventions informed by real-time assessment of pulmonary function in mechanically ventilated critically ill neonates can reduce the incidence of bronchopulmonary dysplasia, pneumothorax, intraventricular hemorrhage and other complications of newborn life. The respiratory system in neonates is uniquely different from older children, and its physiological and anatomic attributes increase neonatal vulnerability to respiratory distress and eventual failure. While significant advancements have been made in developing respiratory support for neonates, such support is accompanied by inherent risks to their delicate lungs. Ventilator-associated lung injury poses a critical concern that can be potentially decreased with more precise, non-invasive, non-radiating, bedside methods for assessing neonatal pulmonary function in real time. Electrical impedance tomography (EIT) is one such tool, with immense potential for real-time pulmonary function monitoring in neonates. Still relatively new and in the earliest stages of clinical adoption, EIT use in neonatal critical care has been reported in several studies. This review discusses the basic features of EIT, its distinct advantages over traditional pulmonary function monitoring tools, the scope of its adoption in neonatal clinical practice, challenges associated with clinical adoption, and prospects for future applications. IMPACT: 1. Individualized care assisted by bedside pulmonary function monitoring can positively impact neonatal critical care and outcomes. 2. Electrical impedance tomography (EIT) has the potential to improve neonatal pulmonary function monitoring and treatment outcomes. 3. Electrical impedance tomography can be adopted as a part of routine neonatal respiratory critical care, especially in the population of patients most at risk for bronchopulmonary dysplasia and acute respiratory complications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pediatric Research
Pediatric Research 医学-小儿科
CiteScore
6.80
自引率
5.60%
发文量
473
审稿时长
3-8 weeks
期刊介绍: Pediatric Research publishes original papers, invited reviews, and commentaries on the etiologies of children''s diseases and disorders of development, extending from molecular biology to epidemiology. Use of model organisms and in vitro techniques relevant to developmental biology and medicine are acceptable, as are translational human studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信