Johannes Lässing, Sonja Hummelmann, Maxi Kramer, Ulrich Laufs, Sven Fikenzer, Roberto Falz
{"title":"Repetition-dependent acutecardiopulmonary responses during intensity-matched squats in males.","authors":"Johannes Lässing, Sonja Hummelmann, Maxi Kramer, Ulrich Laufs, Sven Fikenzer, Roberto Falz","doi":"10.1113/EP092363","DOIUrl":null,"url":null,"abstract":"<p><p>The 'strength-endurance continuum' is a key concept in strength training (ST). Although cardiopulmonary responses have seldom been reported in conjunction with ST, this repeated-measurement study examined acute blood pressure and haemodynamic responses continuously depending on the number of repetitions but without changing the intensity. Fifteen healthy male participants (21.6 (2.0) years; mean (SD)) performed an incremental exercise test and a 3-repetition maximum test (3-RM) on a Smith machine. They were then randomly assigned to three ST sessions involving 10, 20 and 30 repetitions at 50% of their 3-RM. Blood pressure (vascular unloading technique) and cardiopulmonary responses (spirometry and impedance cardiography) were continuously monitored. Heart rate (121 (10) vs. 139 (22) vs. 153 (13) bpm, P = 0.001, respectively), cardiac output (10.4 (1.9) vs. 13.6 (3.8) vs. 14.6 (3.1) L/min, P = 0.001, respectively) and diastolic blood pressure (113 (8) vs. 116 (21) vs. 135 (22) mmHg, P = 0.001, respectively) increased in the training sessions with higher repetitions. Stroke volume, systolic blood pressure and end-diastolic volume indicated no change in peak values between training sessions. Total peripheral resistance (13.6 (2.8) vs. 11.3 (3.6) vs. 11.2 (3.1) mmHg min/L, P = 0.002, respectively) was significantly lower with 20 and 30 repetitions, while oxygen uptake ( <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <msub><mi>O</mi> <mn>2</mn></msub> </msub> <annotation>${\\dot V_{{{\\mathrm{O}}_{\\mathrm{2}}}}}$</annotation></semantics> </math> : 15.5 (1.9) vs. 20.5 (4.1) vs. 20.6 (4.4) mL/min/kg, P = 0.001, respectively) was significantly higher. ST of moderate intensity with an exhausting number (>20) of repetitions induces strong haemodynamic responses, especially high cardiac afterload and a compensatory heart rate acceleration, which may also create a strong stimulus for cardiopulmonary adaptation.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092363","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The 'strength-endurance continuum' is a key concept in strength training (ST). Although cardiopulmonary responses have seldom been reported in conjunction with ST, this repeated-measurement study examined acute blood pressure and haemodynamic responses continuously depending on the number of repetitions but without changing the intensity. Fifteen healthy male participants (21.6 (2.0) years; mean (SD)) performed an incremental exercise test and a 3-repetition maximum test (3-RM) on a Smith machine. They were then randomly assigned to three ST sessions involving 10, 20 and 30 repetitions at 50% of their 3-RM. Blood pressure (vascular unloading technique) and cardiopulmonary responses (spirometry and impedance cardiography) were continuously monitored. Heart rate (121 (10) vs. 139 (22) vs. 153 (13) bpm, P = 0.001, respectively), cardiac output (10.4 (1.9) vs. 13.6 (3.8) vs. 14.6 (3.1) L/min, P = 0.001, respectively) and diastolic blood pressure (113 (8) vs. 116 (21) vs. 135 (22) mmHg, P = 0.001, respectively) increased in the training sessions with higher repetitions. Stroke volume, systolic blood pressure and end-diastolic volume indicated no change in peak values between training sessions. Total peripheral resistance (13.6 (2.8) vs. 11.3 (3.6) vs. 11.2 (3.1) mmHg min/L, P = 0.002, respectively) was significantly lower with 20 and 30 repetitions, while oxygen uptake ( : 15.5 (1.9) vs. 20.5 (4.1) vs. 20.6 (4.4) mL/min/kg, P = 0.001, respectively) was significantly higher. ST of moderate intensity with an exhausting number (>20) of repetitions induces strong haemodynamic responses, especially high cardiac afterload and a compensatory heart rate acceleration, which may also create a strong stimulus for cardiopulmonary adaptation.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.