Rapid peptide synthesis using a methylimidazolium sulfinyl fluoride salt.

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Joey Lai, Carlota Bahri, Mai P Truong, Kathleen T Downey, Glenn M Sammis
{"title":"Rapid peptide synthesis using a methylimidazolium sulfinyl fluoride salt.","authors":"Joey Lai, Carlota Bahri, Mai P Truong, Kathleen T Downey, Glenn M Sammis","doi":"10.1038/s42004-025-01456-8","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide couplings have been a subject of investigation for over a century, with modern research seeking to discover new methodologies that minimize purification steps, minimize reagent expense, and/or decrease reaction times. Of the numerous coupling reagents available, sulfur(IV) fluorides have potential as they can effectively transform carboxylic acids to reactive intermediates, and the sulfite by-products can be removed through aqueous washes. Here we demonstrate the formation and capture of key acyl fluorosulfite intermediates for peptide couplings in 15 min total, without epimerization or column chromatography for purification. Dipeptides were obtained in 40-94% yields. This approach was expanded to longer chains through iterative couplings, with oligopeptides obtained in 24-57% yields, each within 2 days. Mechanistic studies indicate the reaction does not proceed through acyl fluoride intermediates, and instead involves nucleophilic catalysis. The mild conditions are tolerant of a wide range of protecting groups of canonical and non-canonical amino acids.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"53"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01456-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide couplings have been a subject of investigation for over a century, with modern research seeking to discover new methodologies that minimize purification steps, minimize reagent expense, and/or decrease reaction times. Of the numerous coupling reagents available, sulfur(IV) fluorides have potential as they can effectively transform carboxylic acids to reactive intermediates, and the sulfite by-products can be removed through aqueous washes. Here we demonstrate the formation and capture of key acyl fluorosulfite intermediates for peptide couplings in 15 min total, without epimerization or column chromatography for purification. Dipeptides were obtained in 40-94% yields. This approach was expanded to longer chains through iterative couplings, with oligopeptides obtained in 24-57% yields, each within 2 days. Mechanistic studies indicate the reaction does not proceed through acyl fluoride intermediates, and instead involves nucleophilic catalysis. The mild conditions are tolerant of a wide range of protecting groups of canonical and non-canonical amino acids.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信