{"title":"Genetically Engineered Bacteria as a Promising Therapeutic Strategy Against Cancer: A Comprehensive Review.","authors":"Zahra Zahedifard, Shirin Mahmoodi, Abdolmajid Ghasemian","doi":"10.1002/bab.2738","DOIUrl":null,"url":null,"abstract":"<p><p>As a significant cause of global mortality, the cancer has also economic impacts. In the era of cancer therapy, mitigating side effects and costs and overcoming drug resistance is crucial. Microbial species can grow inside the tumor microenvironment and inhibit cancer growth through direct killing of tumor cells and immunoregulatory effects. Although microbiota or their products have demonstrated anticancer effects, the possibility of acting as pathogens and exerting side effects in certain individuals is a risk. Hence, several genetically modified/engineered bacteria (GEB) have been developed to this aim with ability of diagnosing and selective targeting and destruction of cancers. Additionally, GEB are expected to be considerably more efficient, safer, more permeable, less costly, and less invasive theranostic approaches compared to wild types. Potential GEB strains such as Escherichia coli (Nissle 1917, and MG1655), Salmonella typhimurium YB1 SL7207 (aroA gene deletion), VNP20009 (∆msbB/∆purI) and ΔppGpp (P<sub>Tet</sub> and P<sub>BAD</sub>), and Listeria monocytogenes Lm<sup>at</sup>-LLO have been developed to combat cancer cells. When used in tandem with conventional treatments, GEB substantially improve the efficacy of anticancer therapy outcomes. In addition, public acceptance, optimal timing (s), duration (s), dose (s), and strains identification, interactions with other strains and the host cells, efficacy, safety and quality, and potential risks and ethical dilemmas include major challenges.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2738","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As a significant cause of global mortality, the cancer has also economic impacts. In the era of cancer therapy, mitigating side effects and costs and overcoming drug resistance is crucial. Microbial species can grow inside the tumor microenvironment and inhibit cancer growth through direct killing of tumor cells and immunoregulatory effects. Although microbiota or their products have demonstrated anticancer effects, the possibility of acting as pathogens and exerting side effects in certain individuals is a risk. Hence, several genetically modified/engineered bacteria (GEB) have been developed to this aim with ability of diagnosing and selective targeting and destruction of cancers. Additionally, GEB are expected to be considerably more efficient, safer, more permeable, less costly, and less invasive theranostic approaches compared to wild types. Potential GEB strains such as Escherichia coli (Nissle 1917, and MG1655), Salmonella typhimurium YB1 SL7207 (aroA gene deletion), VNP20009 (∆msbB/∆purI) and ΔppGpp (PTet and PBAD), and Listeria monocytogenes Lmat-LLO have been developed to combat cancer cells. When used in tandem with conventional treatments, GEB substantially improve the efficacy of anticancer therapy outcomes. In addition, public acceptance, optimal timing (s), duration (s), dose (s), and strains identification, interactions with other strains and the host cells, efficacy, safety and quality, and potential risks and ethical dilemmas include major challenges.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.