PLAGL2-STAU1-NCOA4 axis enhances gastric cancer peritoneal metastasis by resisting ferroptosis via ferritinophagy

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shansong Huang, Peicheng Ji, Peng Xu, Kanghui Liu, Han Ge, Zhengyuan Yan, Quan Cheng, Jialun Lv, Diancai Zhang
{"title":"PLAGL2-STAU1-NCOA4 axis enhances gastric cancer peritoneal metastasis by resisting ferroptosis via ferritinophagy","authors":"Shansong Huang,&nbsp;Peicheng Ji,&nbsp;Peng Xu,&nbsp;Kanghui Liu,&nbsp;Han Ge,&nbsp;Zhengyuan Yan,&nbsp;Quan Cheng,&nbsp;Jialun Lv,&nbsp;Diancai Zhang","doi":"10.1007/s10495-025-02083-3","DOIUrl":null,"url":null,"abstract":"<div><p>Peritoneal metastasis (PM) is the primary site of distant metastasis in gastric cancer (GC) and is associated with an advanced disease stage and poor prognosis. Due to its high resistance to chemotherapy, disseminated peritoneal lesions are often untreatable. A primary reason for therapy resistance in cancer cells is often their defective cell death execution mechanisms. Ferroptosis, a newly identified type of regulated cell death, is strongly linked to the emergence and formation of tumors. Earlier studies have demonstrated the significant role of RNA-binding proteins in ferroptosis. Nevertheless, the fundamental process linking Staufen Double-Stranded RNA Binding Protein 1 (STAU1) to ferroptosis in the peritoneal metastasis of gastric cancer is yet to be clarified. This study shows that the RNA-binding protein STAU1 is crucial for regulating ferroptosis in gastric cancer cells. Elevated levels of STAU1 are linked to unfavorable outcomes in individuals diagnosed with gastric cancer. STAU1 was up-regulated by PLAGL2 and decreased the stability of NCOA4 mRNA by binding to the 3ʹ-untranslated region. Decreased NCOA4 expression inhibits the accumulation of reactive iron, the occurrence of the Fenton reaction, and cellular ROS generation in the GC cells. Additionally, we showed that NCOA4 is crucial in the process of ferritinophagy triggered by the reduction of STAU1 in gastric cancer cells. Ultimately, the process safeguards GC cells from ferroptosis. These findings elucidate the function of PLAGL2/STAU1/NCOA4 in the ferroptosis of gastric cancer cells and provide theoretical backing for possible diagnostic markers and treatment targets for peritoneal metastasis in gastric cancer.</p></div>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":"30 3-4","pages":"1058 - 1075"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10495-025-02083-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peritoneal metastasis (PM) is the primary site of distant metastasis in gastric cancer (GC) and is associated with an advanced disease stage and poor prognosis. Due to its high resistance to chemotherapy, disseminated peritoneal lesions are often untreatable. A primary reason for therapy resistance in cancer cells is often their defective cell death execution mechanisms. Ferroptosis, a newly identified type of regulated cell death, is strongly linked to the emergence and formation of tumors. Earlier studies have demonstrated the significant role of RNA-binding proteins in ferroptosis. Nevertheless, the fundamental process linking Staufen Double-Stranded RNA Binding Protein 1 (STAU1) to ferroptosis in the peritoneal metastasis of gastric cancer is yet to be clarified. This study shows that the RNA-binding protein STAU1 is crucial for regulating ferroptosis in gastric cancer cells. Elevated levels of STAU1 are linked to unfavorable outcomes in individuals diagnosed with gastric cancer. STAU1 was up-regulated by PLAGL2 and decreased the stability of NCOA4 mRNA by binding to the 3ʹ-untranslated region. Decreased NCOA4 expression inhibits the accumulation of reactive iron, the occurrence of the Fenton reaction, and cellular ROS generation in the GC cells. Additionally, we showed that NCOA4 is crucial in the process of ferritinophagy triggered by the reduction of STAU1 in gastric cancer cells. Ultimately, the process safeguards GC cells from ferroptosis. These findings elucidate the function of PLAGL2/STAU1/NCOA4 in the ferroptosis of gastric cancer cells and provide theoretical backing for possible diagnostic markers and treatment targets for peritoneal metastasis in gastric cancer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Apoptosis
Apoptosis 生物-生化与分子生物学
CiteScore
9.10
自引率
4.20%
发文量
85
审稿时长
1 months
期刊介绍: Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信