Tianyu Zhou , Zhaoxue Liu , Lei Xu , Xinli Mao , Haifeng Jin , Yangyang Xiong , Guangwu Chen , Yong Lv , Li Cen , Chunren Wang , Yu Zhang , Kexin Ye , Qien Shen , Jiaming Zhou , Bin Lv , Jianying Dai , Chaohui Yu , Zhe Shen
{"title":"Konjac glucomannan/sodium alginate/ε-poly-l-lysine hydrogel promotes esophageal and colonic wound healing","authors":"Tianyu Zhou , Zhaoxue Liu , Lei Xu , Xinli Mao , Haifeng Jin , Yangyang Xiong , Guangwu Chen , Yong Lv , Li Cen , Chunren Wang , Yu Zhang , Kexin Ye , Qien Shen , Jiaming Zhou , Bin Lv , Jianying Dai , Chaohui Yu , Zhe Shen","doi":"10.1016/j.ijbiomac.2025.141146","DOIUrl":null,"url":null,"abstract":"<div><div>Endoscopic submucosal dissection (ESD) is widely used to treat gastrointestinal mucosal and submucosal lesions. However, it may cause bleeding, perforation, and stricture. Although these complications can be avoided by introducing materials such as polyglycolic acid and carboxymethyl cellulose sheets, such approaches are expensive and time-consuming. Herein, we report a hydrogel prepared by combining a colloidal solution composed of konjac glucomannan (KGM) and sodium alginate (SA) and a fixative solution containing ε-poly-<span>l</span>-lysine (ε-PLL) and calcium chloride. The two solutions were mixed on the wound surface to form the KGM/SA/ε-PLL hydrogel through hydrogen bonds, coordination bonds, and electrostatic attraction. The effectiveness and convenience of applying the KGM/SA/ε-PLL hydrogel to promote wound healing in the esophagus and colon were assessed <em>in vitro</em> and <em>in vivo</em>. We found that the hydrogel stimulated epithelial proliferation, reduced inflammation, promoted recapillarization, and inhibited fibrosis in the esophagus and colon. Therefore, the KGM/SA/ε-PLL hydrogel is an effective and convenient agent that can promote post-ESD wound healing and is recommended for ulcer bed protection in daily clinical practice.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"306 ","pages":"Article 141146"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025016952","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endoscopic submucosal dissection (ESD) is widely used to treat gastrointestinal mucosal and submucosal lesions. However, it may cause bleeding, perforation, and stricture. Although these complications can be avoided by introducing materials such as polyglycolic acid and carboxymethyl cellulose sheets, such approaches are expensive and time-consuming. Herein, we report a hydrogel prepared by combining a colloidal solution composed of konjac glucomannan (KGM) and sodium alginate (SA) and a fixative solution containing ε-poly-l-lysine (ε-PLL) and calcium chloride. The two solutions were mixed on the wound surface to form the KGM/SA/ε-PLL hydrogel through hydrogen bonds, coordination bonds, and electrostatic attraction. The effectiveness and convenience of applying the KGM/SA/ε-PLL hydrogel to promote wound healing in the esophagus and colon were assessed in vitro and in vivo. We found that the hydrogel stimulated epithelial proliferation, reduced inflammation, promoted recapillarization, and inhibited fibrosis in the esophagus and colon. Therefore, the KGM/SA/ε-PLL hydrogel is an effective and convenient agent that can promote post-ESD wound healing and is recommended for ulcer bed protection in daily clinical practice.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.