Unveiling the Architecture of Human Fibrinogen: A Full-Length Structural Model.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-02-22 DOI:10.1002/cbic.202400425
Romina Medeiros, Jorge Cantero, Graciela Borthagaray, Margot Paulino
{"title":"Unveiling the Architecture of Human Fibrinogen: A Full-Length Structural Model.","authors":"Romina Medeiros, Jorge Cantero, Graciela Borthagaray, Margot Paulino","doi":"10.1002/cbic.202400425","DOIUrl":null,"url":null,"abstract":"<p><p>Fibrinogen is a protein involved in the haemostasis process playing a central role by forming the fibrin clot. An understanding of protein structure is vital to determining biological function. Despite many studies on the fibrin polymerization process, its molecular mechanism remains elusive mainly due to the absence of a full-length three-dimensional model of human fibrinogen. Amino- and carboxyl-terminal regions of the three pairs of chains that form this molecule are missing in the crystallographic structure, being the carboxyl-terminal of the Aα chain the most affected with a section of more than 400 amino acids missing. To have a full structure of the fibrinogen molecule would allow the creation of a model of protofibril, shedding light into the fibrin formation process through computational techniques such as molecular dynamics simulations. Absent regions were explored using homology modelling and coarse-grained molecular dynamics simulations. Later on, the model was refined and stabilized with atomistic molecular dynamic simulations. In the present study, we obtained the first realistic full-length structure of fibrinogen, with features in accordance with previous results obtained by experimental techniques.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400425"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400425","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fibrinogen is a protein involved in the haemostasis process playing a central role by forming the fibrin clot. An understanding of protein structure is vital to determining biological function. Despite many studies on the fibrin polymerization process, its molecular mechanism remains elusive mainly due to the absence of a full-length three-dimensional model of human fibrinogen. Amino- and carboxyl-terminal regions of the three pairs of chains that form this molecule are missing in the crystallographic structure, being the carboxyl-terminal of the Aα chain the most affected with a section of more than 400 amino acids missing. To have a full structure of the fibrinogen molecule would allow the creation of a model of protofibril, shedding light into the fibrin formation process through computational techniques such as molecular dynamics simulations. Absent regions were explored using homology modelling and coarse-grained molecular dynamics simulations. Later on, the model was refined and stabilized with atomistic molecular dynamic simulations. In the present study, we obtained the first realistic full-length structure of fibrinogen, with features in accordance with previous results obtained by experimental techniques.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信