Design and synthesis of novel pyrimidine-pyrazole hybrids with dual anticancer and anti-inflammatory effects targeting BRAFV600E and JNK.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Mohammed S Abdel-Maksoud, Hebatollah E Eitah, Rasha M Hassan, Walaa Hamada Abd-Allah
{"title":"Design and synthesis of novel pyrimidine-pyrazole hybrids with dual anticancer and anti-inflammatory effects targeting BRAFV600E and JNK.","authors":"Mohammed S Abdel-Maksoud, Hebatollah E Eitah, Rasha M Hassan, Walaa Hamada Abd-Allah","doi":"10.1007/s11030-025-11121-w","DOIUrl":null,"url":null,"abstract":"<p><p>Two new series of pyrimidinyl ethyl pyrazoles derivatives 13a-f and 14a-f were designed and synthesized to possess both anticancer effect by inhibiting BRAFV600E and anti-inflammatory effect by inhibiting JNK isoforms. The structure of the new compounds was generated from hybridization of two main moieties. The pyrimidinyl moiety from reported BRAFV600E inhibitors, and the pyrazole moiety from JNK isoforms inhibitors. The new final compounds were tested on BRAFV600E, JNK1, JNK2, and JNK3 to measure their kinases inhibitory effect. Compound 14c showed the highest activity on JNK isoforms and BRAFV600E with IC<sub>50</sub> = 0.51 μM, 0.53 μM, 1.02 μM, 0.009 μM on JNK1, JNK2, JNK3,and BRAFV600E, respectively. All final compounds were tested over four cancer cell lines related to the target enzymes. Compound 14d showed the most potent activity on all tested cell lines with IC<sub>50</sub> = 0.87 μM, 0.91, 0.42 μM and 0.63 μM on MOLT-4, K-562, SK-MEL-28, and A375 cell lines, respectively. The ability of 14d and 14c to inhibit MEK1/2 and ERK1/2 phosphorylation was performed by using western blot. The cell cycle analysis of compound 14d on A375 cell line revealed that compound 14d arrested cell growth at G0-G1 phase. Compound 14d remarkably decreased cell migration compared to control group in traditional migration test. Compounds 13a-f and 14a-f showed significant ability to inhibit nitric oxide release and PGE2 production on raw 264.7 macrophages. Compounds 13d and 14d exhibited high inhibitory effect on iNOS and COX-2 compared to COX-1. Finally, the effect of most potent compounds on TNF-alpha and IL-6 was determined.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11121-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Two new series of pyrimidinyl ethyl pyrazoles derivatives 13a-f and 14a-f were designed and synthesized to possess both anticancer effect by inhibiting BRAFV600E and anti-inflammatory effect by inhibiting JNK isoforms. The structure of the new compounds was generated from hybridization of two main moieties. The pyrimidinyl moiety from reported BRAFV600E inhibitors, and the pyrazole moiety from JNK isoforms inhibitors. The new final compounds were tested on BRAFV600E, JNK1, JNK2, and JNK3 to measure their kinases inhibitory effect. Compound 14c showed the highest activity on JNK isoforms and BRAFV600E with IC50 = 0.51 μM, 0.53 μM, 1.02 μM, 0.009 μM on JNK1, JNK2, JNK3,and BRAFV600E, respectively. All final compounds were tested over four cancer cell lines related to the target enzymes. Compound 14d showed the most potent activity on all tested cell lines with IC50 = 0.87 μM, 0.91, 0.42 μM and 0.63 μM on MOLT-4, K-562, SK-MEL-28, and A375 cell lines, respectively. The ability of 14d and 14c to inhibit MEK1/2 and ERK1/2 phosphorylation was performed by using western blot. The cell cycle analysis of compound 14d on A375 cell line revealed that compound 14d arrested cell growth at G0-G1 phase. Compound 14d remarkably decreased cell migration compared to control group in traditional migration test. Compounds 13a-f and 14a-f showed significant ability to inhibit nitric oxide release and PGE2 production on raw 264.7 macrophages. Compounds 13d and 14d exhibited high inhibitory effect on iNOS and COX-2 compared to COX-1. Finally, the effect of most potent compounds on TNF-alpha and IL-6 was determined.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信