Rebastinib inhibits FoxO1 activity and reduces dexamethasone-induced atrophy and its-related gene expression in cultured myotubes.

IF 2.6 4区 医学 Q2 PHYSIOLOGY
Journal of Physiological Sciences Pub Date : 2025-03-01 Epub Date: 2025-02-18 DOI:10.1016/j.jphyss.2025.100012
Tomoki Sato, Akihito Morita, Yui Watanabe, Yumi Naito, Haruka Kawaji, Takumi Nakagawa, Hiroki Hamaguchi, Yasuko Manabe, Nobuharu L Fujii, Naohisa Ogo, Akira Asai, Yasutomi Kamei, Shinji Miura
{"title":"Rebastinib inhibits FoxO1 activity and reduces dexamethasone-induced atrophy and its-related gene expression in cultured myotubes.","authors":"Tomoki Sato, Akihito Morita, Yui Watanabe, Yumi Naito, Haruka Kawaji, Takumi Nakagawa, Hiroki Hamaguchi, Yasuko Manabe, Nobuharu L Fujii, Naohisa Ogo, Akira Asai, Yasutomi Kamei, Shinji Miura","doi":"10.1016/j.jphyss.2025.100012","DOIUrl":null,"url":null,"abstract":"<p><p>FoxO1, a transcription factor, is upregulated in skeletal muscle during atrophy and inactivation of FoxO1 is a potential strategy to prevent muscle loss. This study identified Rebastinib as a potent suppressor of FoxO1 activity among protein kinase inhibitors. To determine whether Rebastinib inhibits atrophy-related ubiquitin ligases gene expression and mitigates atrophy in mouse skeletal muscle-derived cells, we investigated its protective effects of the compound against dexamethasone (DEX)-induced muscle atrophy using C2C12 myotubes. Rebastinib inhibited the DEX-induced upregulation of atrogin-1 and MuRF-1 mRNA, and atrogin-1 protein. Rebastinib also suppressed protein degradation and increased myotube diameter in DEX-treated C2C12 myotubes. Additionally, Rebastinib ameliorated the DEX- and cachexia-induced reduction in contractile force generation. Although the precise mechanisms underlying the action of Rebastinib against muscle atrophy and its efficacy in vivo remains to be elucidated, this compound shows great potential as a therapeutic agent for muscle atrophy.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"75 1","pages":"100012"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jphyss.2025.100012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

FoxO1, a transcription factor, is upregulated in skeletal muscle during atrophy and inactivation of FoxO1 is a potential strategy to prevent muscle loss. This study identified Rebastinib as a potent suppressor of FoxO1 activity among protein kinase inhibitors. To determine whether Rebastinib inhibits atrophy-related ubiquitin ligases gene expression and mitigates atrophy in mouse skeletal muscle-derived cells, we investigated its protective effects of the compound against dexamethasone (DEX)-induced muscle atrophy using C2C12 myotubes. Rebastinib inhibited the DEX-induced upregulation of atrogin-1 and MuRF-1 mRNA, and atrogin-1 protein. Rebastinib also suppressed protein degradation and increased myotube diameter in DEX-treated C2C12 myotubes. Additionally, Rebastinib ameliorated the DEX- and cachexia-induced reduction in contractile force generation. Although the precise mechanisms underlying the action of Rebastinib against muscle atrophy and its efficacy in vivo remains to be elucidated, this compound shows great potential as a therapeutic agent for muscle atrophy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
4.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound. Fields covered: Adaptation and environment Autonomic nervous function Biophysics Cell sensors and signaling Central nervous system and brain sciences Endocrinology and metabolism Excitable membranes and neural cell physiology Exercise physiology Gastrointestinal and kidney physiology Heart and circulatory physiology Molecular and cellular physiology Muscle physiology Physiome/systems biology Respiration physiology Senses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信