Staphylococcal SplA and SplB serine proteases target ubiquitin(-like) specific proteases.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Felix L Glinka, Ole Schmöker, Abhishek K Singh, Leif Steil, Christian Hentschker, Uwe Völker, Dominique Böttcher, Michael Lammers, Clemens Cammann, Ulrike Seifert, Elke Krüger, Michael Naumann, Barbara M Bröker, Uwe T Bornscheuer
{"title":"Staphylococcal SplA and SplB serine proteases target ubiquitin(-like) specific proteases.","authors":"Felix L Glinka, Ole Schmöker, Abhishek K Singh, Leif Steil, Christian Hentschker, Uwe Völker, Dominique Böttcher, Michael Lammers, Clemens Cammann, Ulrike Seifert, Elke Krüger, Michael Naumann, Barbara M Bröker, Uwe T Bornscheuer","doi":"10.1186/s13568-025-01841-5","DOIUrl":null,"url":null,"abstract":"<p><p>Staphylococcus aureus is a Gram-positive opportunistic pathogen that has colonized nearly 30% of the human population and can cause life-threatening infections. S. aureus exports a variety of virulence factors, such as a novel set of extracellular serine protease-like proteins (Spls). Spls are expressed by most clinical isolates of S. aureus, but their pathophysiological substrates and role during the infection are largely unknown. Here we characterized the substrate and cleavage specificity of recombinantly expressed SplA and SplB proteins. We identified a group of ubiquitin or ubiquitin-like modifying enzymes including deubiquitinating enzymes from human as well as from bacterial sources to be so far unknown SplA and SplB substrates. Distinct cleavage sites within these substrates for SplA (YLY<sup>↓</sup>T, FMY<sup>↓</sup>N) and SplB (VCD<sup>↓</sup>S) were identified by mass spectrometry and confirmed by site-directed mutagenesis of the target proteins. Since many cellular immune signaling pathways are tightly regulated by ubiquitination, the specific cleavage of ubiquitin modifying enzymes strongly suggests a specific role of Spls in manipulating immune signaling and in competing with other bacteria.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"15 1","pages":"32"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-025-01841-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Staphylococcus aureus is a Gram-positive opportunistic pathogen that has colonized nearly 30% of the human population and can cause life-threatening infections. S. aureus exports a variety of virulence factors, such as a novel set of extracellular serine protease-like proteins (Spls). Spls are expressed by most clinical isolates of S. aureus, but their pathophysiological substrates and role during the infection are largely unknown. Here we characterized the substrate and cleavage specificity of recombinantly expressed SplA and SplB proteins. We identified a group of ubiquitin or ubiquitin-like modifying enzymes including deubiquitinating enzymes from human as well as from bacterial sources to be so far unknown SplA and SplB substrates. Distinct cleavage sites within these substrates for SplA (YLYT, FMYN) and SplB (VCDS) were identified by mass spectrometry and confirmed by site-directed mutagenesis of the target proteins. Since many cellular immune signaling pathways are tightly regulated by ubiquitination, the specific cleavage of ubiquitin modifying enzymes strongly suggests a specific role of Spls in manipulating immune signaling and in competing with other bacteria.

求助全文
约1分钟内获得全文 求助全文
来源期刊
AMB Express
AMB Express BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
2.70%
发文量
141
审稿时长
13 weeks
期刊介绍: AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信