Lanthanide-Controlled Protein Switches: Development and In Vitro and In Vivo Applications

Zhong Guo, Oleh Smutok, Chantal Ronacher, Raquel Aguiar Rocha, Patricia Walden, Sergey Mureev, Zhenling Cui, Evgeny Katz, Colin Scott, Kirill Alexandrov
{"title":"Lanthanide-Controlled Protein Switches: Development and In Vitro and In Vivo Applications","authors":"Zhong Guo,&nbsp;Oleh Smutok,&nbsp;Chantal Ronacher,&nbsp;Raquel Aguiar Rocha,&nbsp;Patricia Walden,&nbsp;Sergey Mureev,&nbsp;Zhenling Cui,&nbsp;Evgeny Katz,&nbsp;Colin Scott,&nbsp;Kirill Alexandrov","doi":"10.1002/ange.202411584","DOIUrl":null,"url":null,"abstract":"<p>Lanthanides, which are part of the rare earth elements group have numerous applications in electronics, medicine and energy storage. However, our ability to extract them is not meeting the rapidly increasing demand. The discovery of the bacterial periplasmic lanthanide-binding protein lanmodulin spurred significant interest in developing biotechnological routes for lanthanide detection and extraction. Here we report the construction of β-lactamase-lanmodulin chimeras that function as lanthanide-controlled enzymatic switches. Optimized switches demonstrated dynamic ranges approaching 3000-fold and could accurately quantify lanthanide ions in simple colorimetric or electrochemical assays. <i>E.coli</i> cells expressing such chimeras grow on β-lactam antibiotics only in the presence of lanthanide ions. The developed lanthanide-controlled protein switches represent a novel platform for engineering metal-binding proteins for biosensing and microbial engineering.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202411584","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202411584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lanthanides, which are part of the rare earth elements group have numerous applications in electronics, medicine and energy storage. However, our ability to extract them is not meeting the rapidly increasing demand. The discovery of the bacterial periplasmic lanthanide-binding protein lanmodulin spurred significant interest in developing biotechnological routes for lanthanide detection and extraction. Here we report the construction of β-lactamase-lanmodulin chimeras that function as lanthanide-controlled enzymatic switches. Optimized switches demonstrated dynamic ranges approaching 3000-fold and could accurately quantify lanthanide ions in simple colorimetric or electrochemical assays. E.coli cells expressing such chimeras grow on β-lactam antibiotics only in the presence of lanthanide ions. The developed lanthanide-controlled protein switches represent a novel platform for engineering metal-binding proteins for biosensing and microbial engineering.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信