The development of multifunctional biomaterials holds paramount importance in advancing biomedical research and applications. This investigation focuses on synthesizing cerium/reduced graphene oxide (Ce/RGO) nanocomposites using a hydrothermal approach. Structural evaluations via XRD and Raman spectroscopy confirm the successful conversion of graphene oxide (GO) to rGO and the integration of cerium nanoparticles onto the rGO surface. FTIR spectroscopy further validates structural alterations and the successful adhesion of cerium nanoparticles. Morphological and elemental analyses performed using FE-SEM and EDAX demonstrate the attachment of cerium nanoparticles onto rGO sheets. Enhanced hardness in Ce/rGO samples, compared with pure rGO, as indicated by Vickers hardness testing, suggests improved mechanical properties because of the existence of cerium nanoparticles. Measurements of the water contact angle show reduced hydrophobicity in Ce-rGO samples, implying enhanced wettability upon cerium nanoparticle integration. Additionally, porosity analysis reveals increased porosity in Ce/rGO samples, facilitating enhanced nutrient transfer within the system. Biocompatibility assessments, including hemolytic activity testing and Vero cell viability tests demonstrate favorable biocompatibility and improved cell viability in Ce/rGO samples compared with pure rGO. Antibacterial studies unveil increased efficacy against S. aureus and E. coli in Ce/rGO samples, attributed to the synergistic effects of rGO's antimicrobial properties and cerium nanoparticles' activity. This study highlights the encouraging potential of Ce/rGO nanostructures for biomedical applications, offering distinct mechanical properties, hydrophilicity, favorable biological interactions, and enhanced antibacterial performance.