Aili Zou, Yang Yang, Hailong Wang, Pinya Wang, Hong Liao
{"title":"Aerosol Decline Accelerates the Increasing Extreme Precipitation in China","authors":"Aili Zou, Yang Yang, Hailong Wang, Pinya Wang, Hong Liao","doi":"10.1029/2024GL113887","DOIUrl":null,"url":null,"abstract":"<p>Extreme precipitation is becoming more intense and frequent. The increasing trends in extreme precipitation in China in warm season related to changes in aerosols and greenhouse gases (GHGs) are investigated using observations, reanalysis data and model simulations. A significant accelerating increase in extreme precipitation occurred around 2010, with the trend in accumulated extreme rainfall amount (R95pTOT) increasing from 2.88 mm per decade during 2000–2010 to 22.88 mm per decade during 2010–2023. The sudden acceleration of the increasing extreme precipitation is largely attributed to the reverse in aerosol trends associated with China’s clean air actions, which affects extreme precipitation through perturbing cloud microphysics and atmospheric dynamics, accounting for half of the change in R95pTOT trends. Future aerosol reduction to achieve carbon neutrality is shown to continue to intensify the extreme precipitation, which overweighs the effect induced by GHGs, highlighting the importance of aerosol changes in modulating future climate and weather extremes.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113887","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113887","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Extreme precipitation is becoming more intense and frequent. The increasing trends in extreme precipitation in China in warm season related to changes in aerosols and greenhouse gases (GHGs) are investigated using observations, reanalysis data and model simulations. A significant accelerating increase in extreme precipitation occurred around 2010, with the trend in accumulated extreme rainfall amount (R95pTOT) increasing from 2.88 mm per decade during 2000–2010 to 22.88 mm per decade during 2010–2023. The sudden acceleration of the increasing extreme precipitation is largely attributed to the reverse in aerosol trends associated with China’s clean air actions, which affects extreme precipitation through perturbing cloud microphysics and atmospheric dynamics, accounting for half of the change in R95pTOT trends. Future aerosol reduction to achieve carbon neutrality is shown to continue to intensify the extreme precipitation, which overweighs the effect induced by GHGs, highlighting the importance of aerosol changes in modulating future climate and weather extremes.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.