{"title":"Multilayer Collaborative Optimization for the System Configuration, Operation, and Maintenance of Smart Community Microgrids","authors":"Jiangshan Liu, Qi Zhou, Youyi Bi","doi":"10.1155/er/7756589","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Smart community microgrids are capable of efficiently addressing the energy and environmental challenges faced by cities. However, the inherent instability of renewable energy sources and the diverse nature of user demands pose challenges to the safe operation of community power systems. In this article, we first introduce a comprehensive system architecture, and an operational framework based on Energy Internet of Things (EIoT), which considers system-level safety, reliability, and cost-effectiveness, thereby enhancing the system’s coordination and performance. Next, we propose a bi-level coordinated optimization method based on the users’ electricity consumption behaviors. At the planning level, we employ a multiobjective optimization approach to determine the most suitable microgrid configurations that cater to the requirements of various user groups, and the results derived from adaptive weight particle swarm optimization (PSO) algorithm are fed back to the operational level. At the operational level, a 24-h time scale is selected, and the economic efficiency problem is addressed using a linear programming method. The operational decision results are then fed back to the planning level for major maintenance of the microgrid system. Meanwhile, we employ trend prediction methods to categorize maintenance tasks into short-term and long-term operations based on an analysis of daily operational data. The short-term prediction results can serve as a reference to guide daily short-term operations and maintenance tasks, while the long-term prediction results can inform renovation and reconstruction initiatives for community microgrid. Finally, we choose a community as the subject of our study, and the results indicate that our research can provide new methods for the design and operation of microgrid in smart communities, thereby improving the scalability of the community’s power system.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/7756589","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/7756589","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Smart community microgrids are capable of efficiently addressing the energy and environmental challenges faced by cities. However, the inherent instability of renewable energy sources and the diverse nature of user demands pose challenges to the safe operation of community power systems. In this article, we first introduce a comprehensive system architecture, and an operational framework based on Energy Internet of Things (EIoT), which considers system-level safety, reliability, and cost-effectiveness, thereby enhancing the system’s coordination and performance. Next, we propose a bi-level coordinated optimization method based on the users’ electricity consumption behaviors. At the planning level, we employ a multiobjective optimization approach to determine the most suitable microgrid configurations that cater to the requirements of various user groups, and the results derived from adaptive weight particle swarm optimization (PSO) algorithm are fed back to the operational level. At the operational level, a 24-h time scale is selected, and the economic efficiency problem is addressed using a linear programming method. The operational decision results are then fed back to the planning level for major maintenance of the microgrid system. Meanwhile, we employ trend prediction methods to categorize maintenance tasks into short-term and long-term operations based on an analysis of daily operational data. The short-term prediction results can serve as a reference to guide daily short-term operations and maintenance tasks, while the long-term prediction results can inform renovation and reconstruction initiatives for community microgrid. Finally, we choose a community as the subject of our study, and the results indicate that our research can provide new methods for the design and operation of microgrid in smart communities, thereby improving the scalability of the community’s power system.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system