Elinor Aviv-Sharon, Laure D. Sultan, Leah Naveh, Meital Kupervaser, Ziv Reich, Dana Charuvi, Zach Adam
{"title":"The thylakoid lumen Deg1 protease affects non-photochemical quenching via the levels of violaxanthin de-epoxidase and PsbS","authors":"Elinor Aviv-Sharon, Laure D. Sultan, Leah Naveh, Meital Kupervaser, Ziv Reich, Dana Charuvi, Zach Adam","doi":"10.1111/tpj.17263","DOIUrl":null,"url":null,"abstract":"<p>Non-photochemical quenching (NPQ), the dissipation of excess light energy as heat, has been long recognized as a major protective mechanism that minimizes the potential for oxidative damage to photosystem II (PSII) reaction centers. Two major positive contributors to NPQ are the carotenoid zeaxanthin, generated from violaxanthin by the enzyme violaxanthin de-epoxidase (VDE or NPQ1), and the thylakoid protein PsbS (NPQ4). The involvement of the lumenal Deg proteases in the repair of PSII from photoinhibition prompted us to further explore their possible role in other responses of <i>Arabidopsis thaliana</i> to high light. Here we show that upon exposure to high light, the single <i>deg1</i> and the triple <i>deg158</i> mutants display different levels and kinetics of NPQ, compared with the <i>deg58</i> mutant and WT that behave alike. In response to high light, the two genotypes lacking Deg1 overaccumulate NPQ1 and NPQ4. After temporal inhibition of protein translation in vivo, the level of these two proteins in <i>deg1</i> is higher than in WT. Together, the results suggest that Deg1 represents a new level of regulation of the NPQ process through adjusting the quantity of NPQ1 and NPQ4 proteins, probably through their proteolysis.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17263","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17263","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Non-photochemical quenching (NPQ), the dissipation of excess light energy as heat, has been long recognized as a major protective mechanism that minimizes the potential for oxidative damage to photosystem II (PSII) reaction centers. Two major positive contributors to NPQ are the carotenoid zeaxanthin, generated from violaxanthin by the enzyme violaxanthin de-epoxidase (VDE or NPQ1), and the thylakoid protein PsbS (NPQ4). The involvement of the lumenal Deg proteases in the repair of PSII from photoinhibition prompted us to further explore their possible role in other responses of Arabidopsis thaliana to high light. Here we show that upon exposure to high light, the single deg1 and the triple deg158 mutants display different levels and kinetics of NPQ, compared with the deg58 mutant and WT that behave alike. In response to high light, the two genotypes lacking Deg1 overaccumulate NPQ1 and NPQ4. After temporal inhibition of protein translation in vivo, the level of these two proteins in deg1 is higher than in WT. Together, the results suggest that Deg1 represents a new level of regulation of the NPQ process through adjusting the quantity of NPQ1 and NPQ4 proteins, probably through their proteolysis.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.