Magnet Shape Modeling in Slotless Axial Flux Permanent Magnet Machines Under No-Load Conditions

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Farhad Rezaee-Alam
{"title":"Magnet Shape Modeling in Slotless Axial Flux Permanent Magnet Machines Under No-Load Conditions","authors":"Farhad Rezaee-Alam","doi":"10.1155/etep/5584461","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper presents a new 3D analytical model based on the Fourier–Bessel series for electromagnetic modeling of the performance of slotless axial flux permanent magnet (AFPM) machines under no-load conditions. The machine geometry is divided into different domains including the permanent magnet (PM) domain, the air-gap domain, and so on. The Laplace equation in terms of scalar magnetic potential is solved in each domain, and their solutions are expressed based on the Fourier–Bessel series to accurately consider the radial variation of the air-gap magnetic field. A 2D geometry function based on the Fourier–Bessel series is introduced to accurately consider the different PM shaping in the magnet domain. The boundary condition is then used to determine the unknown constants in the general solutions. This 3D analytical model is prepared to calculate the no-load flux linkage of stator phases while considering different PM shapes and skewing effects. Two indexes including the amplitude of the fundamental component and the total harmonic distortion (THD) of no-load phase flux linkage are considered to investigate the effect of skewed PMs and other PM shapes. The capability of the proposed 3D analytical model is also presented to calculate the air-gap magnetic field due to the stator phases for determining the inductance matrix. Finally, the accuracy of the proposed 3D analytical model is verified by comparing it with the corresponding results obtained through the finite element method (FEM) and the experiment setup.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/5584461","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/etep/5584461","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new 3D analytical model based on the Fourier–Bessel series for electromagnetic modeling of the performance of slotless axial flux permanent magnet (AFPM) machines under no-load conditions. The machine geometry is divided into different domains including the permanent magnet (PM) domain, the air-gap domain, and so on. The Laplace equation in terms of scalar magnetic potential is solved in each domain, and their solutions are expressed based on the Fourier–Bessel series to accurately consider the radial variation of the air-gap magnetic field. A 2D geometry function based on the Fourier–Bessel series is introduced to accurately consider the different PM shaping in the magnet domain. The boundary condition is then used to determine the unknown constants in the general solutions. This 3D analytical model is prepared to calculate the no-load flux linkage of stator phases while considering different PM shapes and skewing effects. Two indexes including the amplitude of the fundamental component and the total harmonic distortion (THD) of no-load phase flux linkage are considered to investigate the effect of skewed PMs and other PM shapes. The capability of the proposed 3D analytical model is also presented to calculate the air-gap magnetic field due to the stator phases for determining the inductance matrix. Finally, the accuracy of the proposed 3D analytical model is verified by comparing it with the corresponding results obtained through the finite element method (FEM) and the experiment setup.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信