Revitalising DC-Aged Silicone Rubber Composites: Hybrid-Silica/Alumina Triumph Over Multi-Stress Ageing

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Rahmat Ullah, Israr Ullah, Rizwan Ahmed, Alistair Reid, Manu Haddad
{"title":"Revitalising DC-Aged Silicone Rubber Composites: Hybrid-Silica/Alumina Triumph Over Multi-Stress Ageing","authors":"Rahmat Ullah,&nbsp;Israr Ullah,&nbsp;Rizwan Ahmed,&nbsp;Alistair Reid,&nbsp;Manu Haddad","doi":"10.1049/nde2.70003","DOIUrl":null,"url":null,"abstract":"<p>In this study, various concentrations of high-temperature vulcanised silicone rubber composites filled with nano/micro silica and alumina were manufactured. In this work, all test specimens were subjected to a variety of environmental stresses as well as DC voltage for 5000 h. Then, different diagnostic methods were used to look at the changes that happened on their surfaces and in their bulk properties. These included hydrophobicity classification, X-ray photoelectron spectroscopy (XPS) analysis, Fourier transform infrared spectroscopy (FTIR) analysis, thermogravimetric analysis (TGA) analysis, leakage current analysis and mechanical strength analysis. The composite with 2% nano silica and 10% micro alumina had the smoothest surface and the best hydrophobicity (HC-3). It also had the lowest leakage current (3.1 μA), the least amount of strength loss (31.3%), and good thermal stability compared to the other samples that were studied. Aged samples show a considerable increase in the concentration of the O element and a significant drop in the proportion of the Si component relative to the virgin specimen, which points to the oxidation of chemical bonds during HTV SR and their composites during ageing but with different concentrations. However, two samples (SP2 and SP3) showed comparatively lower concentrations of oxygen degradation in Si contents. This can be attributed to the strong molecular interaction between the fillers and the base matrix.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"8 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, various concentrations of high-temperature vulcanised silicone rubber composites filled with nano/micro silica and alumina were manufactured. In this work, all test specimens were subjected to a variety of environmental stresses as well as DC voltage for 5000 h. Then, different diagnostic methods were used to look at the changes that happened on their surfaces and in their bulk properties. These included hydrophobicity classification, X-ray photoelectron spectroscopy (XPS) analysis, Fourier transform infrared spectroscopy (FTIR) analysis, thermogravimetric analysis (TGA) analysis, leakage current analysis and mechanical strength analysis. The composite with 2% nano silica and 10% micro alumina had the smoothest surface and the best hydrophobicity (HC-3). It also had the lowest leakage current (3.1 μA), the least amount of strength loss (31.3%), and good thermal stability compared to the other samples that were studied. Aged samples show a considerable increase in the concentration of the O element and a significant drop in the proportion of the Si component relative to the virgin specimen, which points to the oxidation of chemical bonds during HTV SR and their composites during ageing but with different concentrations. However, two samples (SP2 and SP3) showed comparatively lower concentrations of oxygen degradation in Si contents. This can be attributed to the strong molecular interaction between the fillers and the base matrix.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信