{"title":"Electric vehicle charging demand forecasting at charging stations under climate influence for electricity dispatching","authors":"Peilu Chen, Jianzhong Qin, Jinxi Dong, Long Ling, Xiaoming Lin, Huixian Ding","doi":"10.1049/pel2.12833","DOIUrl":null,"url":null,"abstract":"<p>As the prevalence of electric vehicles (EVs) continues to surge, the precise forecasting of charging demands at individual charging stations becomes imperative for effective power distribution management. However, the charging demand of EVs is often related to various factors and exhibits strong randomness. This paper aims to explore the impact of climatic factors on the charging demand of electric vehicles at charging stations, and to study a prediction model based on the attention mechanism of LSTM for predicting the load of charging stations, providing important guidance for the scheduling of electric vehicles. By analysing the load data of a single charging station under different climatic conditions, the paper finds that climatic factors such as the highest temperature of the day, the lowest temperature, and the type of weather significantly affect the charging demand of electric vehicles. Utilizing the aforementioned characteristics, this paper studies a climate feature-guided charging demand prediction model for a single charging station, which adopts the LSTM architecture and introduces the attention mechanism, incorporating the above-mentioned important climatic features, and is ultimately able to accurately predict the future charging demand of the charging station. The experimental results show that, compared to other time series forecasting models, this model has significantly improved performance on the dataset tests, with its accuracy ratio (AR) indicator and qualified rate indicator both exceeding 0.85 and 0.95, respectively. This study not only offers a new perspective and method for predicting the demand for electric vehicle charging but also provides support for the development of electric vehicle scheduling.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12833","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12833","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As the prevalence of electric vehicles (EVs) continues to surge, the precise forecasting of charging demands at individual charging stations becomes imperative for effective power distribution management. However, the charging demand of EVs is often related to various factors and exhibits strong randomness. This paper aims to explore the impact of climatic factors on the charging demand of electric vehicles at charging stations, and to study a prediction model based on the attention mechanism of LSTM for predicting the load of charging stations, providing important guidance for the scheduling of electric vehicles. By analysing the load data of a single charging station under different climatic conditions, the paper finds that climatic factors such as the highest temperature of the day, the lowest temperature, and the type of weather significantly affect the charging demand of electric vehicles. Utilizing the aforementioned characteristics, this paper studies a climate feature-guided charging demand prediction model for a single charging station, which adopts the LSTM architecture and introduces the attention mechanism, incorporating the above-mentioned important climatic features, and is ultimately able to accurately predict the future charging demand of the charging station. The experimental results show that, compared to other time series forecasting models, this model has significantly improved performance on the dataset tests, with its accuracy ratio (AR) indicator and qualified rate indicator both exceeding 0.85 and 0.95, respectively. This study not only offers a new perspective and method for predicting the demand for electric vehicle charging but also provides support for the development of electric vehicle scheduling.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf