Shuai Huang, Shuaige Bai, Ting Luo, Bin Feng, Min Liu, Fan Zheng, Shuang Huang, Yanpeng Fang, Dan Ding, Wenbin Zeng
{"title":"Engineering high-performance chemiluminescent probes via enzymatic pocket targeting: high-throughput screening for ultralong afterglow imaging of orthotopic hepatocellular carcinoma","authors":"Shuai Huang, Shuaige Bai, Ting Luo, Bin Feng, Min Liu, Fan Zheng, Shuang Huang, Yanpeng Fang, Dan Ding, Wenbin Zeng","doi":"10.1007/s11426-024-2296-6","DOIUrl":null,"url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) is a highly aggressive liver malignancy and the main form of liver cancer. Early diagnosis and treatment of HCC can effectively reduce mortality. Carboxylesterase (CE)-specific detection and imaging can be used for early diagnosis and image-guided surgical of HCC. However, traditional optical probes suffer from poor selectivity and low imaging signal-to-noise ratio. Here, we have constructed a series of chemiluminescent probes for carboxylesterase detection based on the strategy of enzymatic pocket-oriented steric tailoring techniques. The probes with different unique and excellent properties have been obtained through the structure-based steric hindrance adjustment on the recognition site. Here, <b>CE-2</b> has been successfully used for high-throughput screening of rapid carboxylesterase inhibitors due to its extremely low detection limit (2.5 × 10<sup>−4</sup> U mL<sup>−1</sup>) and fast recognition ability. <b>CE-3</b> has been successfully used for image-guided surgery of orthotopic hepatocellular carcinoma due to its ultra-long chemiluminescence imaging (over 12 h) of hepatocellular carcinoma. This study may promote advances in the rapid detection and screening of inhibitory drugs for CE and the field of surgical navigation in HCC.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"68 3","pages":"1175 - 1184"},"PeriodicalIF":10.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2296-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive liver malignancy and the main form of liver cancer. Early diagnosis and treatment of HCC can effectively reduce mortality. Carboxylesterase (CE)-specific detection and imaging can be used for early diagnosis and image-guided surgical of HCC. However, traditional optical probes suffer from poor selectivity and low imaging signal-to-noise ratio. Here, we have constructed a series of chemiluminescent probes for carboxylesterase detection based on the strategy of enzymatic pocket-oriented steric tailoring techniques. The probes with different unique and excellent properties have been obtained through the structure-based steric hindrance adjustment on the recognition site. Here, CE-2 has been successfully used for high-throughput screening of rapid carboxylesterase inhibitors due to its extremely low detection limit (2.5 × 10−4 U mL−1) and fast recognition ability. CE-3 has been successfully used for image-guided surgery of orthotopic hepatocellular carcinoma due to its ultra-long chemiluminescence imaging (over 12 h) of hepatocellular carcinoma. This study may promote advances in the rapid detection and screening of inhibitory drugs for CE and the field of surgical navigation in HCC.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.