Ha Phan , Pol de la Cruz-Sánchez , María Jesús Cabrera-Afonso , Belén Martín-Matute
{"title":"Auto-relay catalysis for the oxidative carboxylation of alkenes into cyclic carbonates by a MOF catalyst†","authors":"Ha Phan , Pol de la Cruz-Sánchez , María Jesús Cabrera-Afonso , Belén Martín-Matute","doi":"10.1039/d4gc06360k","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we present the preparation and application of a new manganoporphyrin Hf-MOF catalyst, Hf-PCN-222(Mn) for the direct oxidative carboxylation of alkenes with CO<sub>2</sub>, leading to the effective formation of cyclic organic carbonates (COCs). In contrast to the conventional two-step process, this one-step methodology eliminates the need for the preparation, purification, and handling of epoxides. Hf-PCN-222(Mn) operates under very mild conditions, enabling the synthesis of a wide variety of COCs from alkenes (23 examples, up to 75% yield), as well as the chemoselective and size-selective carboxylation of dienes (7 examples, up to 61% yield). Additionally, we observed that Hf-PCN-222(Mn) could be recycled multiple times without significant loss of activity, providing insight into the sustainability of this approach.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 9","pages":"Pages 2439-2448"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d4gc06360k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225000767","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we present the preparation and application of a new manganoporphyrin Hf-MOF catalyst, Hf-PCN-222(Mn) for the direct oxidative carboxylation of alkenes with CO2, leading to the effective formation of cyclic organic carbonates (COCs). In contrast to the conventional two-step process, this one-step methodology eliminates the need for the preparation, purification, and handling of epoxides. Hf-PCN-222(Mn) operates under very mild conditions, enabling the synthesis of a wide variety of COCs from alkenes (23 examples, up to 75% yield), as well as the chemoselective and size-selective carboxylation of dienes (7 examples, up to 61% yield). Additionally, we observed that Hf-PCN-222(Mn) could be recycled multiple times without significant loss of activity, providing insight into the sustainability of this approach.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.