Dysregulation of immune system markers, gut microbiota and short-chain fatty acid production following prenatal alcohol exposure: A developmental perspective

IF 4.4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Victoria R. Vella , Garrett Ainsworth-Cruickshank , Carolina Luft , Kingston E. Wong , Laura W. Parfrey , A. Wayne Vogl , Parker J. Holman , Tamara S. Bodnar , Charlis Raineki
{"title":"Dysregulation of immune system markers, gut microbiota and short-chain fatty acid production following prenatal alcohol exposure: A developmental perspective","authors":"Victoria R. Vella ,&nbsp;Garrett Ainsworth-Cruickshank ,&nbsp;Carolina Luft ,&nbsp;Kingston E. Wong ,&nbsp;Laura W. Parfrey ,&nbsp;A. Wayne Vogl ,&nbsp;Parker J. Holman ,&nbsp;Tamara S. Bodnar ,&nbsp;Charlis Raineki","doi":"10.1016/j.neuint.2025.105952","DOIUrl":null,"url":null,"abstract":"<div><div>Prenatal alcohol exposure (PAE) can severely impact fetal development, including alterations to the developing immune system. Immune perturbations, in tandem with gut dysbiosis, have been linked to brain and behavioral dysfunction, but this relationship is poorly understood in the context of PAE. This study takes an ontogenetic approach to evaluate PAE-induced alterations to brain and serum cytokine levels and both the composition and metabolic output of the gut microbiota. Using a well-established rat model of PAE, cytokine levels in the serum, prefrontal cortex, amygdala, and hypothalamus as well as gut microbiota composition and short-chain fatty acid (SCFA) levels were assessed at three postnatal (P) timepoints: P8 (infancy), P22 (weaning), and P38 (adolescence). Male PAE rats had increased cytokine levels in the amygdala and hypothalamus, but not prefrontal cortex, at P8. This altered neuroimmune function was not seen in the PAE females. The effect of PAE on central cytokine levels was reduced at P22/38, the same age at which PAE-induced alterations in serum cytokine levels emerge in both sexes. PAE reduced bacterial diversity in both sexes at P8, but only in females at P38, where a PAE-induced unique community composition emerged. Both sexes had alterations to specific bacterial taxa (e.g., Firmicutes), some of which are important in producing the SCFA butyric acid, which was decreased in PAE animals at P22. These results demonstrate that PAE leads to sex- and age-specific alterations in immune function, gut microbiota and SCFA production, highlighting the need to consider both age and sex in future work.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"185 ","pages":"Article 105952"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018625000257","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prenatal alcohol exposure (PAE) can severely impact fetal development, including alterations to the developing immune system. Immune perturbations, in tandem with gut dysbiosis, have been linked to brain and behavioral dysfunction, but this relationship is poorly understood in the context of PAE. This study takes an ontogenetic approach to evaluate PAE-induced alterations to brain and serum cytokine levels and both the composition and metabolic output of the gut microbiota. Using a well-established rat model of PAE, cytokine levels in the serum, prefrontal cortex, amygdala, and hypothalamus as well as gut microbiota composition and short-chain fatty acid (SCFA) levels were assessed at three postnatal (P) timepoints: P8 (infancy), P22 (weaning), and P38 (adolescence). Male PAE rats had increased cytokine levels in the amygdala and hypothalamus, but not prefrontal cortex, at P8. This altered neuroimmune function was not seen in the PAE females. The effect of PAE on central cytokine levels was reduced at P22/38, the same age at which PAE-induced alterations in serum cytokine levels emerge in both sexes. PAE reduced bacterial diversity in both sexes at P8, but only in females at P38, where a PAE-induced unique community composition emerged. Both sexes had alterations to specific bacterial taxa (e.g., Firmicutes), some of which are important in producing the SCFA butyric acid, which was decreased in PAE animals at P22. These results demonstrate that PAE leads to sex- and age-specific alterations in immune function, gut microbiota and SCFA production, highlighting the need to consider both age and sex in future work.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurochemistry international
Neurochemistry international 医学-神经科学
CiteScore
8.40
自引率
2.40%
发文量
128
审稿时长
37 days
期刊介绍: Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信