Deep learning-based pipe segmentation and geometric reconstruction from poorly scanned point clouds using BIM-driven data alignment

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Wanchen Yu , Jiangpeng Shu , Zihan Yang , Hongliang Ding , Wuhua Zeng , Yong Bai
{"title":"Deep learning-based pipe segmentation and geometric reconstruction from poorly scanned point clouds using BIM-driven data alignment","authors":"Wanchen Yu ,&nbsp;Jiangpeng Shu ,&nbsp;Zihan Yang ,&nbsp;Hongliang Ding ,&nbsp;Wuhua Zeng ,&nbsp;Yong Bai","doi":"10.1016/j.autcon.2025.106071","DOIUrl":null,"url":null,"abstract":"<div><div>Pipe reconstruction is an important prerequisite for pipe maintenance. However, scanned point clouds often contain defects, presenting a significant challenge for automated segmentation and geometric reconstruction. To address this challenge, this paper proposes a learning-based segmentation method, PipeSegNet, along with a geometric reconstruction process. In the segmentation stage, a method is developed to generate datasets with controlled density from BIM. Meanwhile, alignment strategies are introduced to address feature and label inconsistencies between BIM-generated and real datasets. PipeSegNet enhances global and local perceptual capability, achieving pipe segmentation accuracy of 96.37 % and IoU of 91.45 %, ensuring high-quality reconstruction. Comparative and module evaluation experiments demonstrate the effectiveness of PipeSegNet combined with the alignment strategies. The total average relative error of the reconstructed pipes is 2.73 %. This paper provides valuable insights into the pipe segmentation and reconstruction from point clouds, particularly in scenes with poor scanning quality, contributing to efficient infrastructure maintenance.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"173 ","pages":"Article 106071"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525001116","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pipe reconstruction is an important prerequisite for pipe maintenance. However, scanned point clouds often contain defects, presenting a significant challenge for automated segmentation and geometric reconstruction. To address this challenge, this paper proposes a learning-based segmentation method, PipeSegNet, along with a geometric reconstruction process. In the segmentation stage, a method is developed to generate datasets with controlled density from BIM. Meanwhile, alignment strategies are introduced to address feature and label inconsistencies between BIM-generated and real datasets. PipeSegNet enhances global and local perceptual capability, achieving pipe segmentation accuracy of 96.37 % and IoU of 91.45 %, ensuring high-quality reconstruction. Comparative and module evaluation experiments demonstrate the effectiveness of PipeSegNet combined with the alignment strategies. The total average relative error of the reconstructed pipes is 2.73 %. This paper provides valuable insights into the pipe segmentation and reconstruction from point clouds, particularly in scenes with poor scanning quality, contributing to efficient infrastructure maintenance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信