Doubly robust estimation for non-probability samples with heterogeneity

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Zhan Liu, Yi Sun, Yong Li, Yuanmeng Li
{"title":"Doubly robust estimation for non-probability samples with heterogeneity","authors":"Zhan Liu,&nbsp;Yi Sun,&nbsp;Yong Li,&nbsp;Yuanmeng Li","doi":"10.1016/j.cam.2025.116567","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of network technology and the rise of big data, non-probability sampling has wider applications in practice. However, it brings a challenge to make inference from non-probability samples since the inclusion probabilities of non-probability samples are unknown. The propensity score approach, superpopulation model approach, doubly robust estimation are three main methods to infer the population from non-probability samples. However, the first two methods are sensitive to the misspecified models. Thus, they cannot generate desirable performances when deal with heterogeneous non-probability samples. In this paper, a doubly robust estimation method for non-probability samples with heterogeneous data is proposed. A heterogeneous superpopulation model is fitted based on a heterogeneous non-probability sample and used to construct a doubly robust estimator for the population mean. Specifically, the inverse estimated inclusion probabilities of the non-probability sample are added into the estimating equation as weights in model parameter estimation. The simulation results confirm that the proposed method outperforms the other contrastive methods in terms of bias, standard deviation and mean square error. Its application is illustrated with the Pew Research Center dataset and the Behavioral Risk Factor Surveillance System dataset, which is consistent with the simulation results.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"465 ","pages":"Article 116567"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725000822","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of network technology and the rise of big data, non-probability sampling has wider applications in practice. However, it brings a challenge to make inference from non-probability samples since the inclusion probabilities of non-probability samples are unknown. The propensity score approach, superpopulation model approach, doubly robust estimation are three main methods to infer the population from non-probability samples. However, the first two methods are sensitive to the misspecified models. Thus, they cannot generate desirable performances when deal with heterogeneous non-probability samples. In this paper, a doubly robust estimation method for non-probability samples with heterogeneous data is proposed. A heterogeneous superpopulation model is fitted based on a heterogeneous non-probability sample and used to construct a doubly robust estimator for the population mean. Specifically, the inverse estimated inclusion probabilities of the non-probability sample are added into the estimating equation as weights in model parameter estimation. The simulation results confirm that the proposed method outperforms the other contrastive methods in terms of bias, standard deviation and mean square error. Its application is illustrated with the Pew Research Center dataset and the Behavioral Risk Factor Surveillance System dataset, which is consistent with the simulation results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信