{"title":"A fourth-order exponential time differencing scheme with dimensional splitting for non-linear reaction–diffusion systems","authors":"E.O. Asante-Asamani , A. Kleefeld , B.A. Wade","doi":"10.1016/j.cam.2025.116568","DOIUrl":null,"url":null,"abstract":"<div><div>A fourth-order exponential time differencing (ETD) Runge–Kutta scheme with dimensional splitting is developed to solve multidimensional non-linear systems of reaction–diffusion equations (RDE). By approximating the matrix exponential in the scheme with the A-acceptable Padé (2,2) rational function, the resulting scheme (ETDRK4P22-IF) is verified empirically to be fourth-order accurate for several RDE. The scheme is shown to be more efficient than competing fourth-order ETD and IMEX schemes, achieving up to 20X speed-up in CPU time. Inclusion of up to three pre-smoothing steps of a lower order L-stable scheme facilitates efficient damping of spurious oscillations arising from problems with non-smooth initial/boundary conditions.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"465 ","pages":"Article 116568"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725000834","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A fourth-order exponential time differencing (ETD) Runge–Kutta scheme with dimensional splitting is developed to solve multidimensional non-linear systems of reaction–diffusion equations (RDE). By approximating the matrix exponential in the scheme with the A-acceptable Padé (2,2) rational function, the resulting scheme (ETDRK4P22-IF) is verified empirically to be fourth-order accurate for several RDE. The scheme is shown to be more efficient than competing fourth-order ETD and IMEX schemes, achieving up to 20X speed-up in CPU time. Inclusion of up to three pre-smoothing steps of a lower order L-stable scheme facilitates efficient damping of spurious oscillations arising from problems with non-smooth initial/boundary conditions.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.