{"title":"Mapped Hermite functions and their applications to two-dimensional weakly singular Fredholm–Hammerstein integral equations","authors":"Min Wang , Zhimin Zhang","doi":"10.1016/j.cam.2025.116585","DOIUrl":null,"url":null,"abstract":"<div><div>The Fredholm–Hammerstein integral equations (FHIEs) with weakly singular kernels exhibit multi-point singularity at the endpoints or boundaries. The dense discretized matrices result in high computational complexity when employing numerical methods. To address this, we propose a novel class of mapped Hermite functions, which are constructed by applying a mapping to Hermite polynomials. We establish fundamental approximation theory for the orthogonal functions. We propose MHFs-spectral collocation method and MHFs-smoothing transformation method to solve the two-point weakly singular FHIEs, respectively. Error analysis and numerical results demonstrate that our methods, based on the new orthogonal functions, are particularly effective for handling problems with weak singularities at two endpoints, yielding exponential convergence rate. We position this work as the first to directly study the mapped spectral method for multi-point singularity problems, to the best of our knowledge.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"465 ","pages":"Article 116585"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725001001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Fredholm–Hammerstein integral equations (FHIEs) with weakly singular kernels exhibit multi-point singularity at the endpoints or boundaries. The dense discretized matrices result in high computational complexity when employing numerical methods. To address this, we propose a novel class of mapped Hermite functions, which are constructed by applying a mapping to Hermite polynomials. We establish fundamental approximation theory for the orthogonal functions. We propose MHFs-spectral collocation method and MHFs-smoothing transformation method to solve the two-point weakly singular FHIEs, respectively. Error analysis and numerical results demonstrate that our methods, based on the new orthogonal functions, are particularly effective for handling problems with weak singularities at two endpoints, yielding exponential convergence rate. We position this work as the first to directly study the mapped spectral method for multi-point singularity problems, to the best of our knowledge.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.