Tiantian Wang , Miquel Perelló Amorós , Gemma Lopez Llao , Cinta Porte
{"title":"Distinctive lipidomic responses induced by polystyrene micro- and nano-plastics in zebrafish liver cells","authors":"Tiantian Wang , Miquel Perelló Amorós , Gemma Lopez Llao , Cinta Porte","doi":"10.1016/j.aquatox.2025.107291","DOIUrl":null,"url":null,"abstract":"<div><div>Despite growing awareness of the size-dependent toxicity caused by micro- and nano-plastics (MNPs) in fish, the modulation of the liver lipidome as a function of particle size has not been thoroughly investigated. This study explores the subcellular and molecular responses induced by polystyrene microplastics (MPs, 1 µm) and nano-plastics (NPs, 52 nm) in zebrafish liver (ZFL) cells, with a focus on the modulation of the cell's lipidome and gene expression profiles. Both particle sizes are readily internalized by ZFL cells; however, NPs had a more pronounced impact compared to MPs. Lipidomic analysis revealed that MPs decreased polyunsaturated phospholipids, while NPs increased ether-linked phosphatidylcholines (PC-Ps/PC<img>Os). Gene expression analysis showed that high concentrations of MPs down-regulated the expression of fatty acid synthesis related genes, and significantly downregulated the microsomal triglyceride transfer protein (<em>mtp)</em> gene, indicating a perturbation in lipid storage metabolism, which was not observed for NP exposure. In contrast, NPs induced a dose-dependent accumulation of lipids, suggesting increased lipid droplet formation and an activation of ceramide-mediated apoptosis pathway. These findings provide new insights into the molecular mechanisms of MNP toxicity and emphasize the importance of considering particle size when assessing environmental and health risks. Furthermore, this study highlights the potential of lipidomics for elucidating the mechanisms underlying MNP toxicity, prompting further research into of the long-term consequences of exposure.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"281 ","pages":"Article 107291"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000566","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite growing awareness of the size-dependent toxicity caused by micro- and nano-plastics (MNPs) in fish, the modulation of the liver lipidome as a function of particle size has not been thoroughly investigated. This study explores the subcellular and molecular responses induced by polystyrene microplastics (MPs, 1 µm) and nano-plastics (NPs, 52 nm) in zebrafish liver (ZFL) cells, with a focus on the modulation of the cell's lipidome and gene expression profiles. Both particle sizes are readily internalized by ZFL cells; however, NPs had a more pronounced impact compared to MPs. Lipidomic analysis revealed that MPs decreased polyunsaturated phospholipids, while NPs increased ether-linked phosphatidylcholines (PC-Ps/PCOs). Gene expression analysis showed that high concentrations of MPs down-regulated the expression of fatty acid synthesis related genes, and significantly downregulated the microsomal triglyceride transfer protein (mtp) gene, indicating a perturbation in lipid storage metabolism, which was not observed for NP exposure. In contrast, NPs induced a dose-dependent accumulation of lipids, suggesting increased lipid droplet formation and an activation of ceramide-mediated apoptosis pathway. These findings provide new insights into the molecular mechanisms of MNP toxicity and emphasize the importance of considering particle size when assessing environmental and health risks. Furthermore, this study highlights the potential of lipidomics for elucidating the mechanisms underlying MNP toxicity, prompting further research into of the long-term consequences of exposure.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.