Elaine Kaspchak , Eduardo Vicente , Elizabeth Harumi Nabeshima , Maria Teresa Bertoldo Pacheco , Mitie Sonia Sadahira
{"title":"Hydration of broken carioca beans: Kinetics and changes in composition and techno-functional properties","authors":"Elaine Kaspchak , Eduardo Vicente , Elizabeth Harumi Nabeshima , Maria Teresa Bertoldo Pacheco , Mitie Sonia Sadahira","doi":"10.1016/j.jfoodeng.2025.112537","DOIUrl":null,"url":null,"abstract":"<div><div>Maceration of bean grains reduce antinutritional substances and cooking time. The hydration of broken beans differs from that of whole beans due to their larger surface area and the absence of seed coat resistance to water penetration. Therefore, the aim of this work was to investigate the effect of temperature on the hydration kinetics of broken carioca beans and the chemical composition, and techno-functional properties of macerated flour. The hydration curve of broken grains showed no lag phase due to their larger surface area and exposed interiors. The hydration time decreased with the temperature rise and was shorter for broken beans compared to whole grains, while the equilibrium moisture content was similar. The protein, ash, carbohydrate, and lipid content of flours did not differ significantly between untreated and macerated flours. Phytic acid and moisture content were reduced in the macerated flour. Techno-functional properties remained unchanged, however the macerated showed higher viscosity and setback values obtained by rapid visco analyzer and produced a firmer and more adhesive gel. Off-flavor compounds from aldehyde, alcohol, ketone, and furan classes were more prevalent in the macerated flour, probably due to increased oxidation during processing. The results presented in this work show how hydration affects broken carioca beans providing information for improving the processing efficiency and quality of carioca bean byproducts.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"395 ","pages":"Article 112537"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026087742500072X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Maceration of bean grains reduce antinutritional substances and cooking time. The hydration of broken beans differs from that of whole beans due to their larger surface area and the absence of seed coat resistance to water penetration. Therefore, the aim of this work was to investigate the effect of temperature on the hydration kinetics of broken carioca beans and the chemical composition, and techno-functional properties of macerated flour. The hydration curve of broken grains showed no lag phase due to their larger surface area and exposed interiors. The hydration time decreased with the temperature rise and was shorter for broken beans compared to whole grains, while the equilibrium moisture content was similar. The protein, ash, carbohydrate, and lipid content of flours did not differ significantly between untreated and macerated flours. Phytic acid and moisture content were reduced in the macerated flour. Techno-functional properties remained unchanged, however the macerated showed higher viscosity and setback values obtained by rapid visco analyzer and produced a firmer and more adhesive gel. Off-flavor compounds from aldehyde, alcohol, ketone, and furan classes were more prevalent in the macerated flour, probably due to increased oxidation during processing. The results presented in this work show how hydration affects broken carioca beans providing information for improving the processing efficiency and quality of carioca bean byproducts.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.