Optimal intensity measures for fragility analysis of shallow circular subway tunnels subjected to Rayleigh waves

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Ji Zhang , Hengyi Li , Chenyu Yan , Zigang Xu , Haiyang Zhuang , Baizan Tang , Guobo Wang
{"title":"Optimal intensity measures for fragility analysis of shallow circular subway tunnels subjected to Rayleigh waves","authors":"Ji Zhang ,&nbsp;Hengyi Li ,&nbsp;Chenyu Yan ,&nbsp;Zigang Xu ,&nbsp;Haiyang Zhuang ,&nbsp;Baizan Tang ,&nbsp;Guobo Wang","doi":"10.1016/j.tust.2025.106478","DOIUrl":null,"url":null,"abstract":"<div><div>Shallow subway tunnels in both the intermediate and far fields are significantly affected by Rayleigh surface waves, which typically induce substantial vertical seismic motion and exhibit high seismic destructiveness. However, current vulnerability assessments of underground tunnels primarily focus on body waves. This study aims to identify the optimal ground motion intensity measures (IMs) for evaluating the seismic fragility of shallow circular subway tunnels subjected to Rayleigh waves. A detailed dynamic analysis of soil-tunnel interaction is performed using the two-dimensional Finite Element Method, with particular emphasis on the influence of tunnel burial depth and site classification on the tunnel’s response to Rayleigh waves. The input of Rayleigh wave motion is modeled by transforming the motion into a series of equivalent forces, applied through viscoelastic boundaries. This study examines 15 widely used ground motion IMs, with diameter deformation ratio (<em>DDR</em>) serving as the damage measure (DM). Linear regression analysis is conducted to explore the relationship between IMs and <em>DDR</em>. The optimal IMs are evaluated based on criteria including efficiency, practicality, proficiency, and correlation. The results indicate that for sites classified as Class III and IV, the optimal IM is root mean square velocity (<em>v</em><sub>rms</sub>), while for Class II sites, spectral mean velocity (SMV) is more suitable. Fragility curves for shallow-buried tunnels in Class II, III, and IV sites are presented. These curves demonstrate that tunnels are most vulnerable to damage in Class II sites, followed by Class IV, and least vulnerable in Class III sites. In Class II sites, shallower tunnel depths are associated with increased seismic damage, while deeper tunnels in Class III and IV sites experience greater seismic damage. The primary factor influencing seismic damage to tunnels is the vertical relative deformation of the surrounding soil layers.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"159 ","pages":"Article 106478"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825001166","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Shallow subway tunnels in both the intermediate and far fields are significantly affected by Rayleigh surface waves, which typically induce substantial vertical seismic motion and exhibit high seismic destructiveness. However, current vulnerability assessments of underground tunnels primarily focus on body waves. This study aims to identify the optimal ground motion intensity measures (IMs) for evaluating the seismic fragility of shallow circular subway tunnels subjected to Rayleigh waves. A detailed dynamic analysis of soil-tunnel interaction is performed using the two-dimensional Finite Element Method, with particular emphasis on the influence of tunnel burial depth and site classification on the tunnel’s response to Rayleigh waves. The input of Rayleigh wave motion is modeled by transforming the motion into a series of equivalent forces, applied through viscoelastic boundaries. This study examines 15 widely used ground motion IMs, with diameter deformation ratio (DDR) serving as the damage measure (DM). Linear regression analysis is conducted to explore the relationship between IMs and DDR. The optimal IMs are evaluated based on criteria including efficiency, practicality, proficiency, and correlation. The results indicate that for sites classified as Class III and IV, the optimal IM is root mean square velocity (vrms), while for Class II sites, spectral mean velocity (SMV) is more suitable. Fragility curves for shallow-buried tunnels in Class II, III, and IV sites are presented. These curves demonstrate that tunnels are most vulnerable to damage in Class II sites, followed by Class IV, and least vulnerable in Class III sites. In Class II sites, shallower tunnel depths are associated with increased seismic damage, while deeper tunnels in Class III and IV sites experience greater seismic damage. The primary factor influencing seismic damage to tunnels is the vertical relative deformation of the surrounding soil layers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信