A comprehensive review of foundation designs for fixed offshore wind turbines

IF 2.3 3区 工程技术 Q2 ENGINEERING, MARINE
Yun-jae Kim , Jin Seok Lim , Hae Jong Kim , Sung-Woong Choi
{"title":"A comprehensive review of foundation designs for fixed offshore wind turbines","authors":"Yun-jae Kim ,&nbsp;Jin Seok Lim ,&nbsp;Hae Jong Kim ,&nbsp;Sung-Woong Choi","doi":"10.1016/j.ijnaoe.2025.100643","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, technical challenges and their corresponding solutions for each type of foundation—gravity-based, monopile, jacket, tripod, and suction bucket—used in wind turbines were addressed with consideration to different water depths. Along with presenting challenges and their solutions for each foundation, the present study proposed optimizing solutions and methods for addressing these challenges, including numerical approaches and empirical methods derived from field testing. These include enhancing structural stability, improving installation efficiency, and utilizing advanced structural analysis techniques to predict and mitigate environmental impacts. Finally, research cases demonstrating improvements in foundations through shape modifications are summarized. This paper focuses on addressing and proposing an optimal design approach to achieve cost reduction, improved stiffness, and weight minimization. Notably, hybrid foundations incorporating friction wheels achieved a 300% increase in ultimate bearing capacity, while optimization techniques accounting for environmental loads resulted in approximately a 38.24% reduction in foundation weight.</div></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"17 ","pages":"Article 100643"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678225000019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, technical challenges and their corresponding solutions for each type of foundation—gravity-based, monopile, jacket, tripod, and suction bucket—used in wind turbines were addressed with consideration to different water depths. Along with presenting challenges and their solutions for each foundation, the present study proposed optimizing solutions and methods for addressing these challenges, including numerical approaches and empirical methods derived from field testing. These include enhancing structural stability, improving installation efficiency, and utilizing advanced structural analysis techniques to predict and mitigate environmental impacts. Finally, research cases demonstrating improvements in foundations through shape modifications are summarized. This paper focuses on addressing and proposing an optimal design approach to achieve cost reduction, improved stiffness, and weight minimization. Notably, hybrid foundations incorporating friction wheels achieved a 300% increase in ultimate bearing capacity, while optimization techniques accounting for environmental loads resulted in approximately a 38.24% reduction in foundation weight.
固定式海上风力发电机基础设计综述
本文针对风力发电机组中使用的重力式基础、单桩式基础、夹套式基础、三脚架式基础、吸力桶式基础等不同类型的基础,针对不同的水深,分析了其技术难点及解决方案。除了提出每个基础面临的挑战及其解决方案外,本研究还提出了应对这些挑战的优化解决方案和方法,包括数值方法和来自现场测试的经验方法。这些措施包括增强结构稳定性,提高安装效率,以及利用先进的结构分析技术来预测和减轻环境影响。最后,总结了通过形状修改改善地基的研究案例。本文的重点是解决和提出一个优化的设计方法,以实现成本降低,提高刚度和重量最小化。值得注意的是,结合摩擦轮的混合地基的极限承载能力提高了300%,而考虑环境载荷的优化技术则使地基重量减少了38.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信