Low-dimensional Li+ ion dynamics in the lithiated Buckminster fullerene Li4C60

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Bernhard Gadermaier , H. Martin R. Wilkening
{"title":"Low-dimensional Li+ ion dynamics in the lithiated Buckminster fullerene Li4C60","authors":"Bernhard Gadermaier ,&nbsp;H. Martin R. Wilkening","doi":"10.1016/j.ssi.2025.116805","DOIUrl":null,"url":null,"abstract":"<div><div>Lithiated Buckminster fullerene (Li<sub>4</sub>C<sub>60</sub>) has recently been identified as a fast Li<sup>+</sup> ion conductor. Here, we present a comprehensive NMR-based analysis of <sup>7</sup>Li dynamics in Li<sub>4</sub>C<sub>60</sub>. Our findings indicate that long-range lithium hopping is to be characterized by an activation energy of 0.26 eV. At 378 K, the Li<sup>+</sup> jump rate turned out to be in the order of 10<sup>9</sup> s<sup>−1</sup>, which translates into Einstein-Smoluchowski diffusion coefficients <em>D</em> ranging from ca. 2 to 5 × 10<sup>−7</sup> cm<sup>2</sup> s<sup>−1</sup>, depending on the jump distance chosen (3.6–5 Å) to convert the jump rate into <em>D</em>. The corresponding Arrhenius pre-factor reaches 3 × 10<sup>12</sup> s<sup>−1</sup> and lies in the range of typical phonon frequencies. Comparing our relaxation rates with those presented in the literature earlier suggests low-dimensional Li<sup>+</sup> diffusion in Li<sub>4</sub>C<sub>60</sub>. For short-range or localized Li<sup>+</sup> jump processes, presumably governed by motional correlation effects, we find much lower activation energies ranging from 0.08 eV to 0.17 eV.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"421 ","pages":"Article 116805"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000244","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithiated Buckminster fullerene (Li4C60) has recently been identified as a fast Li+ ion conductor. Here, we present a comprehensive NMR-based analysis of 7Li dynamics in Li4C60. Our findings indicate that long-range lithium hopping is to be characterized by an activation energy of 0.26 eV. At 378 K, the Li+ jump rate turned out to be in the order of 109 s−1, which translates into Einstein-Smoluchowski diffusion coefficients D ranging from ca. 2 to 5 × 10−7 cm2 s−1, depending on the jump distance chosen (3.6–5 Å) to convert the jump rate into D. The corresponding Arrhenius pre-factor reaches 3 × 1012 s−1 and lies in the range of typical phonon frequencies. Comparing our relaxation rates with those presented in the literature earlier suggests low-dimensional Li+ diffusion in Li4C60. For short-range or localized Li+ jump processes, presumably governed by motional correlation effects, we find much lower activation energies ranging from 0.08 eV to 0.17 eV.

Abstract Image

锂化巴克明斯特富勒烯 Li4C60 中的低维 Li+ 离子动力学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信