EPHA5 enhances stemness and decreases gefitinib sensitivity via Wnt signaling pathway in non-small lung cancer

IF 2 Q3 ONCOLOGY
Jie Li , Yehan Zhu
{"title":"EPHA5 enhances stemness and decreases gefitinib sensitivity via Wnt signaling pathway in non-small lung cancer","authors":"Jie Li ,&nbsp;Yehan Zhu","doi":"10.1016/j.adcanc.2025.100135","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Non-small lung cancer (NSCLC) is the most prevalent form of lung cancer, and it is often associated with poor patient outcomes. Erythropoietin-producing hepatocellular receptor A5 (EPHA5), a member of the Eph tyrosine kinase receptor family, has been implicated in various stages of tumor progression. However, the specific role of EPHA5 in NSCLC remains poorly understood. This study aims to explore the influence of EPHA5 on the stemness of NSCLC cancer cells and their sensitivity to gefitinib, while also investigating the underlying mechanisms involved.</div></div><div><h3>Methods</h3><div>EPHA5 expression was suppressed using small interfering ribonucleic acids (siRNAs), while qPCR and Western blot were applied to analyze the knockdown efficiency. Subsequently, the expressions of stem cell-related markers, such as SOX2, Nanog, KLF4, Oct4, and β-catenin, were detected and quantified via qPCR and Western blot during the experiment, while CD133-positive cells were analyzed via flow cytometry. Gefitinib sensitivity was evaluated in EPHA5-knockdown cells. The Wnt activator, CHIR-99021, was employed to rescue β-catenin expression.</div></div><div><h3>Results</h3><div>EPHA5 expression was elevated in NSCLC cell lines (NCI-H460 and NCI-H1229) but considerably downregulated by siRNAs. EPHA5 knockdown alleviated stemness, enhanced gefitinib sensitivity, and suppressed Wnt activation, as evidenced by lower CD133-positive cells, and decreased expression of Sox2, Nanog, KLF4, Oct4, and β-catenin. The Wnt activator reversed the inhibitory effect of EPHA5 on cancer cell stemness by upregulating β-catenin.</div></div><div><h3>Conclusion</h3><div>Silencing the expression of EPHA5 can reduce NSCLC stemness and enhance gefitinib sensitivity by inhibiting the Wnt signaling pathway.</div></div><div><h3>Strengths and limitations of this study</h3><div>We find EPHA5 enhances stemness and decreases gefitinib sensitivity via Wnt signaling pathway of non-small cell lung cancer but prognostic follow-up of lung adenocarcinoma patients in this study is lacking.</div></div>","PeriodicalId":72083,"journal":{"name":"Advances in cancer biology - metastasis","volume":"13 ","pages":"Article 100135"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cancer biology - metastasis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667394025000048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Non-small lung cancer (NSCLC) is the most prevalent form of lung cancer, and it is often associated with poor patient outcomes. Erythropoietin-producing hepatocellular receptor A5 (EPHA5), a member of the Eph tyrosine kinase receptor family, has been implicated in various stages of tumor progression. However, the specific role of EPHA5 in NSCLC remains poorly understood. This study aims to explore the influence of EPHA5 on the stemness of NSCLC cancer cells and their sensitivity to gefitinib, while also investigating the underlying mechanisms involved.

Methods

EPHA5 expression was suppressed using small interfering ribonucleic acids (siRNAs), while qPCR and Western blot were applied to analyze the knockdown efficiency. Subsequently, the expressions of stem cell-related markers, such as SOX2, Nanog, KLF4, Oct4, and β-catenin, were detected and quantified via qPCR and Western blot during the experiment, while CD133-positive cells were analyzed via flow cytometry. Gefitinib sensitivity was evaluated in EPHA5-knockdown cells. The Wnt activator, CHIR-99021, was employed to rescue β-catenin expression.

Results

EPHA5 expression was elevated in NSCLC cell lines (NCI-H460 and NCI-H1229) but considerably downregulated by siRNAs. EPHA5 knockdown alleviated stemness, enhanced gefitinib sensitivity, and suppressed Wnt activation, as evidenced by lower CD133-positive cells, and decreased expression of Sox2, Nanog, KLF4, Oct4, and β-catenin. The Wnt activator reversed the inhibitory effect of EPHA5 on cancer cell stemness by upregulating β-catenin.

Conclusion

Silencing the expression of EPHA5 can reduce NSCLC stemness and enhance gefitinib sensitivity by inhibiting the Wnt signaling pathway.

Strengths and limitations of this study

We find EPHA5 enhances stemness and decreases gefitinib sensitivity via Wnt signaling pathway of non-small cell lung cancer but prognostic follow-up of lung adenocarcinoma patients in this study is lacking.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in cancer biology - metastasis
Advances in cancer biology - metastasis Cancer Research, Oncology
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
103 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信