Analysis of ballistic thermal resistance in FinFETs considering Joule heating effects

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Xixin Rao , Kongzhang Huang , YiPeng Wu , Haitao Zhang , Chengdi Xiao
{"title":"Analysis of ballistic thermal resistance in FinFETs considering Joule heating effects","authors":"Xixin Rao ,&nbsp;Kongzhang Huang ,&nbsp;YiPeng Wu ,&nbsp;Haitao Zhang ,&nbsp;Chengdi Xiao","doi":"10.1016/j.micrna.2025.208113","DOIUrl":null,"url":null,"abstract":"<div><div>The continued miniaturization of integrated circuits has significantly increased power density in heterostructure transistors, creating localized hotspots that degrade device performance. Conventional Fourier's Law (FL) models are limited, particularly when device dimensions approach the phonon mean free path. To address this, we employ the Discrete Ordinates Method (DOM) to solve the non-gray Boltzmann Transport Equation (BTE), enabling precise thermal analysis in FinFETs. Our study underscores the need to incorporate ballistic phonon effects for accurate hotspot temperature predictions under self-heating conditions. Specifically, BTE based temperature estimates are up to 10 % higher than FL based predictions, underscoring the importance of capturing phonon ballistic transport. In heterostructure transistors, substrate-based heat dissipation remains the primary cooling route. Our research demonstrates that diamond substrates can reduce total thermal resistance by approximately 25 % compared to germanium, yet they exhibit higher interfacial thermal resistance relative to silicon carbide and germanium. This work elucidates how substrate thickness, heat-source size, and substrate material critically influence ballistic thermal resistance, thus offering valuable theoretical guidance for optimizing FinFETs design and enhancing thermal management.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"201 ","pages":"Article 208113"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The continued miniaturization of integrated circuits has significantly increased power density in heterostructure transistors, creating localized hotspots that degrade device performance. Conventional Fourier's Law (FL) models are limited, particularly when device dimensions approach the phonon mean free path. To address this, we employ the Discrete Ordinates Method (DOM) to solve the non-gray Boltzmann Transport Equation (BTE), enabling precise thermal analysis in FinFETs. Our study underscores the need to incorporate ballistic phonon effects for accurate hotspot temperature predictions under self-heating conditions. Specifically, BTE based temperature estimates are up to 10 % higher than FL based predictions, underscoring the importance of capturing phonon ballistic transport. In heterostructure transistors, substrate-based heat dissipation remains the primary cooling route. Our research demonstrates that diamond substrates can reduce total thermal resistance by approximately 25 % compared to germanium, yet they exhibit higher interfacial thermal resistance relative to silicon carbide and germanium. This work elucidates how substrate thickness, heat-source size, and substrate material critically influence ballistic thermal resistance, thus offering valuable theoretical guidance for optimizing FinFETs design and enhancing thermal management.
考虑焦耳热效应的finfet弹道热阻分析
集成电路的持续小型化显著提高了异质结构晶体管的功率密度,产生了局部热点,降低了器件性能。传统的傅立叶定律(FL)模型是有限的,特别是当器件尺寸接近声子平均自由程时。为了解决这个问题,我们采用离散坐标法(DOM)来求解非灰色玻尔兹曼输运方程(BTE),从而实现finfet的精确热分析。我们的研究强调了在自加热条件下,需要将弹道声子效应纳入准确的热点温度预测。具体来说,基于BTE的温度估计比基于FL的预测高出10%,强调了捕获声子弹道输运的重要性。在异质结构晶体管中,基于衬底的散热仍然是主要的冷却途径。我们的研究表明,与锗相比,金刚石衬底可以减少约25%的总热阻,但相对于碳化硅和锗,它们表现出更高的界面热阻。这项工作阐明了衬底厚度、热源尺寸和衬底材料如何严重影响弹道热阻,从而为优化finfet设计和加强热管理提供了有价值的理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信