Investigating and modelling the effect of sodium bicarbonate on the synergy of acetate and propionate on Rhodobacter sphaeroides growth for wastewater treatment

Arun Kumar Mehta , Manikanta M. Doki , Gorakhanath Jadhav , Makarand M. Ghangrekar , Brajesh K. Dubey
{"title":"Investigating and modelling the effect of sodium bicarbonate on the synergy of acetate and propionate on Rhodobacter sphaeroides growth for wastewater treatment","authors":"Arun Kumar Mehta ,&nbsp;Manikanta M. Doki ,&nbsp;Gorakhanath Jadhav ,&nbsp;Makarand M. Ghangrekar ,&nbsp;Brajesh K. Dubey","doi":"10.1016/j.scenv.2025.100226","DOIUrl":null,"url":null,"abstract":"<div><div><em>Rhodobacter sphaeroides</em> can be used as a promising candidate for biotechnological resource recovery because of their metabolic versatility. This investigation has employed varying concentrations of sodium bicarbonate at optimal light intensity and synergy of acetate and propionate to examine their effects on the growth of <em>Rh. sphaeroides</em>, as well as on the contents of polyhydroxyalkanoate, protein, and carbohydrate. Acetate-mediated growth at optimal light intensity produced 0.35 g/L of biomass, with polyhydroxyalkanoate extraction yield, carbohydrate and protein contents of 63.70 ± 3.27 mg PHA/g biomass, 2.78 ± 0.51 % w/w and 12.75 ± 0.87 % w/w, respectively, after 7 days. At optimum dosage of 0.9 g/L of sodium bicarbonate, in conjunction with the optimal light intensity and acetate and propionate synergy, 1.25 g/L of biomass was produced, with polyhydroxyalkanoate extraction yield, carbohydrate, and protein contents of 140.83 ± 12.78 mg PHA/g biomass, 7.11 ± 0.47 % w/w and 39.25 ± 0.60 % w/w, respectively. The biomass yield and protein content decreased at 1.2 g/L of sodium bicarbonate, while the polyhydroxyalkanoate content increased, and the carbohydrate content remained unchanged. The simultaneous use of inorganic carbon (sodium bicarbonate) and organic carbon (acetate and propionate) at the optimal light intensity is an efficient technique for enhancing the biomass yield and the synthesis of metabolites, including polyhydroxyalkanoate, protein, and carbohydrate, paving the path for large-scale cultivation and application in wastewater remediation. These metabolites possess diverse uses, including the production of bioplastics from PHA, animal feed from protein, and biofuels from carbohydrate.</div></div>","PeriodicalId":101196,"journal":{"name":"Sustainable Chemistry for the Environment","volume":"9 ","pages":"Article 100226"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for the Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949839225000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rhodobacter sphaeroides can be used as a promising candidate for biotechnological resource recovery because of their metabolic versatility. This investigation has employed varying concentrations of sodium bicarbonate at optimal light intensity and synergy of acetate and propionate to examine their effects on the growth of Rh. sphaeroides, as well as on the contents of polyhydroxyalkanoate, protein, and carbohydrate. Acetate-mediated growth at optimal light intensity produced 0.35 g/L of biomass, with polyhydroxyalkanoate extraction yield, carbohydrate and protein contents of 63.70 ± 3.27 mg PHA/g biomass, 2.78 ± 0.51 % w/w and 12.75 ± 0.87 % w/w, respectively, after 7 days. At optimum dosage of 0.9 g/L of sodium bicarbonate, in conjunction with the optimal light intensity and acetate and propionate synergy, 1.25 g/L of biomass was produced, with polyhydroxyalkanoate extraction yield, carbohydrate, and protein contents of 140.83 ± 12.78 mg PHA/g biomass, 7.11 ± 0.47 % w/w and 39.25 ± 0.60 % w/w, respectively. The biomass yield and protein content decreased at 1.2 g/L of sodium bicarbonate, while the polyhydroxyalkanoate content increased, and the carbohydrate content remained unchanged. The simultaneous use of inorganic carbon (sodium bicarbonate) and organic carbon (acetate and propionate) at the optimal light intensity is an efficient technique for enhancing the biomass yield and the synthesis of metabolites, including polyhydroxyalkanoate, protein, and carbohydrate, paving the path for large-scale cultivation and application in wastewater remediation. These metabolites possess diverse uses, including the production of bioplastics from PHA, animal feed from protein, and biofuels from carbohydrate.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信