Cross-lingual entity alignment based on complex relationships and fine-grained attributes

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Beibei Zhu , Ruijie Tian , Xiaosong Yuan , Ridong Han , Yan Yang , Bo Fu
{"title":"Cross-lingual entity alignment based on complex relationships and fine-grained attributes","authors":"Beibei Zhu ,&nbsp;Ruijie Tian ,&nbsp;Xiaosong Yuan ,&nbsp;Ridong Han ,&nbsp;Yan Yang ,&nbsp;Bo Fu","doi":"10.1016/j.asoc.2025.112894","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge graph entity alignment seeks to match equivalent entities across different graphs, a critical task for enabling cross-lingual knowledge fusion. Mainstream methods use representation learning for entity alignment based on vector distances, but struggle with complex relational semantics and underutilize fine-grained attribute information crucial for alignment. To overcome the above problems, this paper proposes a <strong>c</strong>ross-lingual <strong>e</strong>ntity <strong>a</strong>lignment model based on complex <strong>r</strong>elationships and fine-grained <strong>a</strong>ttributes (CEARA). The proposed model effectively handles relational semantics by distinguishing their varying impacts on entity embeddings and extracting detailed attribute information to enhance alignment accuracy. Additionally, it integrates entity name string similarity to complement missing or noisy relational and attribute data, further improving alignment reliability. To mitigate alignment conflicts, the model employs a global alignment strategy. Experimental results on three cross-lingual datasets demonstrate that CEARA not only outperforms representative baseline models but also achieves Hits@1 scores exceeding 95% across all datasets, highlighting its effectiveness and robustness for cross-lingual alignment. This paper contributes to the advancement of cross-lingual knowledge discovery and application.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"172 ","pages":"Article 112894"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625002054","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge graph entity alignment seeks to match equivalent entities across different graphs, a critical task for enabling cross-lingual knowledge fusion. Mainstream methods use representation learning for entity alignment based on vector distances, but struggle with complex relational semantics and underutilize fine-grained attribute information crucial for alignment. To overcome the above problems, this paper proposes a cross-lingual entity alignment model based on complex relationships and fine-grained attributes (CEARA). The proposed model effectively handles relational semantics by distinguishing their varying impacts on entity embeddings and extracting detailed attribute information to enhance alignment accuracy. Additionally, it integrates entity name string similarity to complement missing or noisy relational and attribute data, further improving alignment reliability. To mitigate alignment conflicts, the model employs a global alignment strategy. Experimental results on three cross-lingual datasets demonstrate that CEARA not only outperforms representative baseline models but also achieves Hits@1 scores exceeding 95% across all datasets, highlighting its effectiveness and robustness for cross-lingual alignment. This paper contributes to the advancement of cross-lingual knowledge discovery and application.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信