Analytical investigation of free vibration analysis in functionally graded graphene platelet-reinforced composite beams

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Rui Ma , Chen Huang , Lei Cao , Yong Cao , Tianchen Zhao , Jianqiang Zhou , Chao Zhang
{"title":"Analytical investigation of free vibration analysis in functionally graded graphene platelet-reinforced composite beams","authors":"Rui Ma ,&nbsp;Chen Huang ,&nbsp;Lei Cao ,&nbsp;Yong Cao ,&nbsp;Tianchen Zhao ,&nbsp;Jianqiang Zhou ,&nbsp;Chao Zhang","doi":"10.1016/j.wavemoti.2025.103525","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene, due to its exceptional mechanical properties, is increasingly recognized as a highly effective reinforcement material for composite structures. Its application in functionally graded graphene platelet-reinforced composite (FG-GPRC) laminated and sandwich beams holds significant potential in various engineering fields. However, accurately predicting the natural frequencies of these beams remains challenging due to limited understanding of interlaminar stress compatibility conditions in current higher-order models. This study addresses this gap by presenting a free vibration analysis of FG-GPRC structures using an improved zigzag beam theory. This theory incorporates transverse shear stresses at layer interfaces, enhancing the accuracy of dynamic analysis. By employing a preprocessing approach based on 3D elasticity equations and Reissner's mixed variational theorem (RMVT), we derive analytical solutions for simply supported laminated and sandwich beams utilizing Hamilton's principle. The proposed model achieves less than 3 % deviation from exact 3D elasticity solutions in predicting natural frequencies, whereas existing higher-order models exhibit deviations exceeding 280 %. Additionally, comprehensive investigations assess the impact of various factors, including graphene volume fractions, distribution profiles, stacking sequences, and geometric attributes. The findings demonstrate that increased graphene volume fractions significantly enhance the natural frequencies of laminated beams, while their effect on sandwich beams is minimal. Furthermore, distribution patterns such as UD and FG-X contribute to higher natural frequencies, and larger span-to-thickness ratios result in increased vibration frequencies. These factors significantly influence the dynamic behavior of FG-GPRC structures, offering valuable insights for design and optimization. This study provides a novel and reliable approach to accurately predicting the dynamic properties of FG-GPRC laminated and sandwich beams, contributing essential knowledge to the field of composite material engineering.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"135 ","pages":"Article 103525"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525000368","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene, due to its exceptional mechanical properties, is increasingly recognized as a highly effective reinforcement material for composite structures. Its application in functionally graded graphene platelet-reinforced composite (FG-GPRC) laminated and sandwich beams holds significant potential in various engineering fields. However, accurately predicting the natural frequencies of these beams remains challenging due to limited understanding of interlaminar stress compatibility conditions in current higher-order models. This study addresses this gap by presenting a free vibration analysis of FG-GPRC structures using an improved zigzag beam theory. This theory incorporates transverse shear stresses at layer interfaces, enhancing the accuracy of dynamic analysis. By employing a preprocessing approach based on 3D elasticity equations and Reissner's mixed variational theorem (RMVT), we derive analytical solutions for simply supported laminated and sandwich beams utilizing Hamilton's principle. The proposed model achieves less than 3 % deviation from exact 3D elasticity solutions in predicting natural frequencies, whereas existing higher-order models exhibit deviations exceeding 280 %. Additionally, comprehensive investigations assess the impact of various factors, including graphene volume fractions, distribution profiles, stacking sequences, and geometric attributes. The findings demonstrate that increased graphene volume fractions significantly enhance the natural frequencies of laminated beams, while their effect on sandwich beams is minimal. Furthermore, distribution patterns such as UD and FG-X contribute to higher natural frequencies, and larger span-to-thickness ratios result in increased vibration frequencies. These factors significantly influence the dynamic behavior of FG-GPRC structures, offering valuable insights for design and optimization. This study provides a novel and reliable approach to accurately predicting the dynamic properties of FG-GPRC laminated and sandwich beams, contributing essential knowledge to the field of composite material engineering.
功能梯度石墨烯平板增强复合梁的自由振动分析研究
石墨烯由于其优异的力学性能,越来越被认为是复合材料结构的高效增强材料。它在功能梯度石墨烯平板增强复合材料(FG-GPRC)层压和夹层梁中的应用在各个工程领域具有重要的潜力。然而,由于目前高阶模型对层间应力协调条件的理解有限,准确预测这些梁的固有频率仍然具有挑战性。本研究通过使用改进的之字形梁理论对FG-GPRC结构进行自由振动分析,解决了这一问题。该理论考虑了层间界面处的横向剪应力,提高了动力分析的准确性。采用基于三维弹性方程和Reissner混合变分定理(RMVT)的预处理方法,利用Hamilton原理推导了简支层合梁和夹层梁的解析解。在预测固有频率时,该模型与精确的三维弹性解的偏差小于3%,而现有的高阶模型的偏差超过280%。此外,综合研究评估了各种因素的影响,包括石墨烯体积分数、分布曲线、堆叠顺序和几何属性。研究结果表明,石墨烯体积分数的增加显著提高了层合梁的固有频率,而对夹层梁的影响很小。此外,UD和FG-X等分布模式有助于提高固有频率,较大的跨厚比导致振动频率增加。这些因素显著影响FG-GPRC结构的动力性能,为设计和优化提供了有价值的见解。该研究为准确预测FG-GPRC层合梁和夹层梁的动力特性提供了一种新颖可靠的方法,为复合材料工程领域提供了重要的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信