Multi-dimensional donor engineering of NIR-II AIEgens for multimodal phototheranostics of orthotopic breast cancer

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Tao Yuan , Jie Cui , Jun Zhu , Ju Mei , Dong Wang , Jianli Hua
{"title":"Multi-dimensional donor engineering of NIR-II AIEgens for multimodal phototheranostics of orthotopic breast cancer","authors":"Tao Yuan ,&nbsp;Jie Cui ,&nbsp;Jun Zhu ,&nbsp;Ju Mei ,&nbsp;Dong Wang ,&nbsp;Jianli Hua","doi":"10.1016/j.biomaterials.2025.123193","DOIUrl":null,"url":null,"abstract":"<div><div>“One-for-all” multimodal phototheranostic agents, which integrate multiple photodiagnostic and phototherapeutic functionalities into a single component, have emerged as promising platforms for advancing cancer treatment. Among these, agents featuring second near-infrared (NIR-II) emission are particularly appealing due to their superior tissue penetration depth and high signal-to-background ratio (SBR). However, most reported NIR-II fluorophores suffer from severely imbalanced radiative and non-radiative excited-state energy dissipation in biological environments, resulting in extremely low fluorescence quantum yields (QYs) and limited diagnostic efficacy. This highlights the urgent need for innovative molecular design strategies to develop high-performance NIR-II “one-for-all” multimodal phototheranostic agents. Herein, we present, for the first time, a multi-dimensional donor engineering protocol that optimizes donor design at the molecular, aggregated, and solvent-interaction levels. By introducing 2,4,4-trimethylpentan-2-yl groups into the diphenylamine indeno[1,2-<em>b</em>]thiophene donor unit, we developed a donor-acceptor-donor (D-A-D) type NIR-II aggregation-induced emission-active luminogen (AIEgen), i.e. OPITBT. When formulated into nanoparticles (NPs), OPITBT NPs exhibited a 16-fold enhancement in fluorescence QY compared to OPITBT in tetrahydrofuran, along with excellent photothermal conversion efficiency (PCE) and acceptable type-I reactive oxygen species (ROS) generation. When further fabricated into tumor-targeting NPs, the resulted OPITBT-R NPs effectively eliminated orthotopic breast cancer through fluorescence-photoacoustic-photothermal multimodal imaging-guided photodynamic-photothermal synergistic therapy under single 808 nm laser irradiation. Notably, the exceptional NIR-II fluorescence brightness of OPITBT-R NPs enables high-resolution NIR-IIb whole-body vascular imaging in living mice. This work provides a versatile strategy to enhance radiative dissipation of NIR-II fluorophores for balanced phototheranostic performance and advances the development of “one-for-all” phototheranostic systems.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"319 ","pages":"Article 123193"},"PeriodicalIF":12.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225001127","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

“One-for-all” multimodal phototheranostic agents, which integrate multiple photodiagnostic and phototherapeutic functionalities into a single component, have emerged as promising platforms for advancing cancer treatment. Among these, agents featuring second near-infrared (NIR-II) emission are particularly appealing due to their superior tissue penetration depth and high signal-to-background ratio (SBR). However, most reported NIR-II fluorophores suffer from severely imbalanced radiative and non-radiative excited-state energy dissipation in biological environments, resulting in extremely low fluorescence quantum yields (QYs) and limited diagnostic efficacy. This highlights the urgent need for innovative molecular design strategies to develop high-performance NIR-II “one-for-all” multimodal phototheranostic agents. Herein, we present, for the first time, a multi-dimensional donor engineering protocol that optimizes donor design at the molecular, aggregated, and solvent-interaction levels. By introducing 2,4,4-trimethylpentan-2-yl groups into the diphenylamine indeno[1,2-b]thiophene donor unit, we developed a donor-acceptor-donor (D-A-D) type NIR-II aggregation-induced emission-active luminogen (AIEgen), i.e. OPITBT. When formulated into nanoparticles (NPs), OPITBT NPs exhibited a 16-fold enhancement in fluorescence QY compared to OPITBT in tetrahydrofuran, along with excellent photothermal conversion efficiency (PCE) and acceptable type-I reactive oxygen species (ROS) generation. When further fabricated into tumor-targeting NPs, the resulted OPITBT-R NPs effectively eliminated orthotopic breast cancer through fluorescence-photoacoustic-photothermal multimodal imaging-guided photodynamic-photothermal synergistic therapy under single 808 nm laser irradiation. Notably, the exceptional NIR-II fluorescence brightness of OPITBT-R NPs enables high-resolution NIR-IIb whole-body vascular imaging in living mice. This work provides a versatile strategy to enhance radiative dissipation of NIR-II fluorophores for balanced phototheranostic performance and advances the development of “one-for-all” phototheranostic systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信