Qixiang Zhang , Huajiang Ouyang , Hang Liu , Jiliang Mo , Bin Tang , Song Zhu , Wenwei Jin
{"title":"A lumped-parameter model for stick–slip vibration in train brake systems considering hexagonal friction block sizes","authors":"Qixiang Zhang , Huajiang Ouyang , Hang Liu , Jiliang Mo , Bin Tang , Song Zhu , Wenwei Jin","doi":"10.1016/j.ymssp.2025.112486","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a lumped-parameter dynamic model considering the geometric characteristics of friction blocks to elucidate the stick–slip vibration in high-speed train brake systems. Taking hexagonal friction blocks in train brake pads as an example, the model integrates their geometric and uneven contact pressure characteristics. A multiscale modeling approach combining fractal contact theory and discrete Iwan model was proposed to describe contact behavior, and a Switch model was employed to simulate stick–slip friction. The variations in stick–slip responses of hexagonal friction blocks of different sizes were analyzed by inputting derived equivalent parameters into the dynamic model. The model was validated using a high-speed train brake simulation test bench, with tests conducted for various friction block sizes. Theoretical and experimental results showed good agreement, confirming the effectiveness of the model. The findings indicate that friction block geometry significantly influences the stick–slip vibration. Larger blocks with increased contact area and mass, improve pressure distribution, increase equivalent contact stiffness, and enhance elastic recovery from minor deformations, thereby reducing nonlinear effects and resulting in a smoother sliding process that mitigates stick–slip vibration. The model provides insights into friction-induced vibration mechanisms and aids in optimizing brake pad design in brake systems.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"228 ","pages":"Article 112486"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025001876","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a lumped-parameter dynamic model considering the geometric characteristics of friction blocks to elucidate the stick–slip vibration in high-speed train brake systems. Taking hexagonal friction blocks in train brake pads as an example, the model integrates their geometric and uneven contact pressure characteristics. A multiscale modeling approach combining fractal contact theory and discrete Iwan model was proposed to describe contact behavior, and a Switch model was employed to simulate stick–slip friction. The variations in stick–slip responses of hexagonal friction blocks of different sizes were analyzed by inputting derived equivalent parameters into the dynamic model. The model was validated using a high-speed train brake simulation test bench, with tests conducted for various friction block sizes. Theoretical and experimental results showed good agreement, confirming the effectiveness of the model. The findings indicate that friction block geometry significantly influences the stick–slip vibration. Larger blocks with increased contact area and mass, improve pressure distribution, increase equivalent contact stiffness, and enhance elastic recovery from minor deformations, thereby reducing nonlinear effects and resulting in a smoother sliding process that mitigates stick–slip vibration. The model provides insights into friction-induced vibration mechanisms and aids in optimizing brake pad design in brake systems.
期刊介绍:
Journal Name: Mechanical Systems and Signal Processing (MSSP)
Interdisciplinary Focus:
Mechanical, Aerospace, and Civil Engineering
Purpose:Reporting scientific advancements of the highest quality
Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems