Global trends of waste tire pyrolysis research: a bibliometric analysis

Siti Nuramirah Rabbani Muhammad Zaki , Nurul Fatahah Asyqin Zainal , Chia Chay Tay
{"title":"Global trends of waste tire pyrolysis research: a bibliometric analysis","authors":"Siti Nuramirah Rabbani Muhammad Zaki ,&nbsp;Nurul Fatahah Asyqin Zainal ,&nbsp;Chia Chay Tay","doi":"10.1016/j.cles.2025.100181","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid accumulation of end-of-life tires, driven by global vehicle use, presents severe environmental challenges. Each year, approximately 3 billion tires are produced globally, with 800 million reaching end-of-life, of which 41% are landfilled without material or energy recovery. Pyrolysis has emerged as a sustainable solution, converting waste tires into valuable by-products, including pyrolysis oil, gas, and recovered carbon black (rCB). This bibliometric review analyzes 1,431 publications (2000–2024) sourced from Scopus to map research trends, advancements, and gaps in tire pyrolysis. Three primary research hotspots are identified: (1) co-pyrolysis, emphasizing feedstock optimization and microwave-assisted methods to enhance efficiency and product quality, (2) pyrolysis oil, addressing challenges in upgrading for industrial use, and (3) recovered carbon black (rCB), focusing on advanced demineralization and activation techniques to improve its properties. Key challenges identified include feedstock variability, catalytic system optimization, and process scalability. This review provides insights and a strategic framework for advancing tire pyrolysis, fostering sustainable practices, and driving innovation across energy, materials, and environmental applications.</div></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":"10 ","pages":"Article 100181"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783125000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid accumulation of end-of-life tires, driven by global vehicle use, presents severe environmental challenges. Each year, approximately 3 billion tires are produced globally, with 800 million reaching end-of-life, of which 41% are landfilled without material or energy recovery. Pyrolysis has emerged as a sustainable solution, converting waste tires into valuable by-products, including pyrolysis oil, gas, and recovered carbon black (rCB). This bibliometric review analyzes 1,431 publications (2000–2024) sourced from Scopus to map research trends, advancements, and gaps in tire pyrolysis. Three primary research hotspots are identified: (1) co-pyrolysis, emphasizing feedstock optimization and microwave-assisted methods to enhance efficiency and product quality, (2) pyrolysis oil, addressing challenges in upgrading for industrial use, and (3) recovered carbon black (rCB), focusing on advanced demineralization and activation techniques to improve its properties. Key challenges identified include feedstock variability, catalytic system optimization, and process scalability. This review provides insights and a strategic framework for advancing tire pyrolysis, fostering sustainable practices, and driving innovation across energy, materials, and environmental applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信