Enhancement of flexural strength of γ-C2S carbonated compacts through in situ synthesis of Mg-calcite

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yunchao Liang , Yunpeng Liu , Zhichao Liu , Fazhou Wang , Shuguang Hu
{"title":"Enhancement of flexural strength of γ-C2S carbonated compacts through in situ synthesis of Mg-calcite","authors":"Yunchao Liang ,&nbsp;Yunpeng Liu ,&nbsp;Zhichao Liu ,&nbsp;Fazhou Wang ,&nbsp;Shuguang Hu","doi":"10.1016/j.compositesb.2025.112331","DOIUrl":null,"url":null,"abstract":"<div><div>To address the inherent brittleness of carbonated gamma calcium silicate (γ-C<sub>2</sub>S) material, we controlled the crystal transformation of γ-C<sub>2</sub>S during the carbonization process to facilitate the development of Mg-calcite particles as secondary phases. In this study, highly Mg-calcite carbonated compacts were synthesized in situ by modulating the concentration of MgCl<sub>2</sub> in an aqueous solution. The mechanisms underlying the toughening of these compacts are discussed in detail. The resulting carbonated compacts prepared in 0.1 or 0.5 mol/L MgCl<sub>2</sub> solutions exhibited compressive strengths over 100 MPa and flexural strengths exceeding 40 MPa. Additional MgCl<sub>2</sub> introduced a chemical looping that accelerates the carbonation reaction. Simultaneously, the formation of Mg-calcite and aragonite induced structural deformation and internal coherent strain, enhancing the capacity of the γ-C<sub>2</sub>S carbonated compacts to withstand high flexural stresses. Furthermore, the interaction of Mg<sup>2+</sup> ions with silica gels promoted the formation of highly polymerized M-S-H structures, resulting in an increased elastic modulus of the carbonated matrix. This toughening strategy effectively addresses the inherent challenges associated with carbonatable binders and holds promise for developing low-carbon cement alternatives.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"297 ","pages":"Article 112331"},"PeriodicalIF":12.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825002215","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the inherent brittleness of carbonated gamma calcium silicate (γ-C2S) material, we controlled the crystal transformation of γ-C2S during the carbonization process to facilitate the development of Mg-calcite particles as secondary phases. In this study, highly Mg-calcite carbonated compacts were synthesized in situ by modulating the concentration of MgCl2 in an aqueous solution. The mechanisms underlying the toughening of these compacts are discussed in detail. The resulting carbonated compacts prepared in 0.1 or 0.5 mol/L MgCl2 solutions exhibited compressive strengths over 100 MPa and flexural strengths exceeding 40 MPa. Additional MgCl2 introduced a chemical looping that accelerates the carbonation reaction. Simultaneously, the formation of Mg-calcite and aragonite induced structural deformation and internal coherent strain, enhancing the capacity of the γ-C2S carbonated compacts to withstand high flexural stresses. Furthermore, the interaction of Mg2+ ions with silica gels promoted the formation of highly polymerized M-S-H structures, resulting in an increased elastic modulus of the carbonated matrix. This toughening strategy effectively addresses the inherent challenges associated with carbonatable binders and holds promise for developing low-carbon cement alternatives.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信