{"title":"Nanobiosensors Enable High-Efficiency Detection of Tuberculosis Nucleic Acid","authors":"Mei Li, Chen Shen, Min Lv* and Yao Luo*, ","doi":"10.1021/jacsau.4c0120610.1021/jacsau.4c01206","DOIUrl":null,"url":null,"abstract":"<p >Tuberculosis (TB) is an infectious disease caused by <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>), with a complex pathogenesis that poses a long-term threat to human health globally. Early and accurate diagnosis of TB provides a critical window for timely and effective treatment. The development of nucleic acid testing (NAT) based on polymerase chain reaction (PCR) has greatly improved the diagnostic efficiency of TB. However, balancing detection accuracy, efficiency, and cost in TB NAT remains challenging. Functionalized nanomaterials-based nanobiosensors have demonstrated exceptional performance in detecting TB nucleic acid by integrating their unique physicochemical properties with diverse biological probes that exploit Mtb characteristics to effectively amplify biological signals. Compared to traditional NAT, nanobiosensors simplify nucleic acid detection, improve accuracy, and reduce reliance on external conditions, thereby contributing to more immediate and accurate TB diagnosis. In this perspective, we provide a comprehensive summary and discussion on current strategies for detecting <i>Mtb</i> biomarkers using nucleic acid along with novel solutions for TB diagnosis. Additionally, we explore the advantages and challenges associated with applying nanotechnology to the clinical management of TB, particularly point-of-care testing (POCT).</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"536–549 536–549"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c01206","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c01206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), with a complex pathogenesis that poses a long-term threat to human health globally. Early and accurate diagnosis of TB provides a critical window for timely and effective treatment. The development of nucleic acid testing (NAT) based on polymerase chain reaction (PCR) has greatly improved the diagnostic efficiency of TB. However, balancing detection accuracy, efficiency, and cost in TB NAT remains challenging. Functionalized nanomaterials-based nanobiosensors have demonstrated exceptional performance in detecting TB nucleic acid by integrating their unique physicochemical properties with diverse biological probes that exploit Mtb characteristics to effectively amplify biological signals. Compared to traditional NAT, nanobiosensors simplify nucleic acid detection, improve accuracy, and reduce reliance on external conditions, thereby contributing to more immediate and accurate TB diagnosis. In this perspective, we provide a comprehensive summary and discussion on current strategies for detecting Mtb biomarkers using nucleic acid along with novel solutions for TB diagnosis. Additionally, we explore the advantages and challenges associated with applying nanotechnology to the clinical management of TB, particularly point-of-care testing (POCT).